A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol describes an efficient way to monitor the cell persistence and biodistribution of human adipose-derived mesenchymal stem cells (haMSCs) by far-red fluorescence labeling in a rat knee osteoarthritis (KOA) model via intra-articular (IA) injection.
In order to support the clinical application of human adipose-derived mesenchymal stem cell (haMSC) therapy for knee osteoarthritis (KOA), we examined the efficacy of cell persistence and biodistribution of haMSCs in animal models. We demonstrated a method to label the cell membrane of haMSCs with lipophilic fluorescent dye. Subsequently, intra-articular injection of the labeled cells in rats with surgically induced KOA was monitored dynamically by an in vivo imaging system. We employed the lipophilic carbocyanines DiD (DilC18 (5)), a far-red fluorescent Dil (dialkylcarbocyanines) analog, which utilized a red laser to avoid excitation of the natural green autofluorescence from surrounding tissues. Furthermore, the red-shifted emission spectra of DiD allowed deep-tissue imaging in live animals and the labeling procedure caused no cytotoxic effects or functional damage to haMSCs. This approach has been shown to be an efficient tracking method for haMSCs in a rat KOA model. The application of this method could also be used to determine the optimal administration route and dosage of MSCs from other sources in pre-clinical studies.
Knee osteoarthritis (KOA) is a degenerative disorder resulting from articular cartilage loss and progressive inflammation, which has become a major chronic disease in the elderly around the world1. However, current therapies using anti-inflammatory drugs, physical supplements, and surgical procedures may only provide temporary relief for symptomatic pain2.
Human adipose-derived mesenchymal stem cells (haMSCs) have become a promising regenerative remedy for knee osteoarthritis, owing to their multipotent differentiation potential for cartilage regeneration and immunomodulatory properties3,4. Compared with pharmacological routes to investigate mechanisms of action in vivo, tracking live haMSCs in small KOA animal models is currently instructive to establish the rationale for and feasibility of haMSC therapy prior to clinical application. For preclinical testing, medial meniscectomy (MM) destabilizes the mechanical load of the joint to induce KOA in rats, which provides a relatively feasible model with consistent reproducibility5. The onset of KOA induced by MM is earlier than anterior cruciate ligament transection alone or combined with partial medial meniscectomy6. Therefore, the long-term interactions between injected haMSCs with the pathological microenvironment of KOA are often assessed in rats induced by MM7,8.
Though the therapeutic efficacy of haMSCs has been extensively reported, relevant knowledge on the in vivo persistence of implanted haMSCs via intra-articular (IA) injection is scarce9,10. Hence, various cellular labeling methods have been developed, including immunohistology11, luciferase12, green fluorescent protein13 transfection, iron oxide labeling for magnetic resonance imaging (MRI)14, and numerous fluorescent cell dyes8,15,16. Compared with labor-intensive histology analyses, in vivo non-invasive imaging employs optical devices to detect the real-time distribution and dynamics of cells labeled with fluorescent signals10,17. For functional live cell imaging, cytocompatible fluorescent labeling is a sophisticated radioactive-free tracking technique to reveal cellular activities after stem cell transplantation18. Moreover, multicolor fluorescent lipophilic dyes possess advantages over amino-reactive hydrophilic dyes or fluorescent proteins, including their improved cell permeability and enhanced fluorescence quantum yields19.
Thus, the protocols included here utilize a red laser to excite cells labeled with lipophilic carbocyanines DiD (DilC18(5)), which is a far-red fluorescent Dil (dialkylcarbocyanines) analog20. The red-shifted excitation and emission spectra of DiD avoids autofluorescent interference and allows deep-tissue imaging over a long period of time in live animals8. This method of tracking cells in vivo labeled with DiD is valid for monitoring transplanted stem cells, such as haMSCs, in animal models, which is essential to understand and improve current stem cell regenerative therapy.
Procedures involving animal subjects were approved by the local Institutional Animal Care and Ethics Committee, with an effort to minimize animal suffering. The following protocol was approved by the Institutional Animal Care and Use Committee (IACUC) at Shanghai Ninth People’s Hospital affiliated to Shanghai JiaoTong University School of Medicine with the protocol number [2017]063.
1. Establishment of a Surgically-Induced Rat Knee Osteoarthritis Model
2. Histology Assessment of Rat KOA Model
3. Labelling of Human Mesenchymal Stem Cells with the Fluorescent Dye DiD
4. In Vivo Fluorescent Imaging to Track haMSCs
In order to induce KOA model, MM was performed in the right knee joint of SD rats (Figure 3). Eight weeks after surgery, rats were sacrificed and the serial sections of knee joints were evaluated with both H&E and Safranin O/Fast Green staining (Figure 4). For H&E staining, the surface of the articular cartilage exhibited rougher borders in the surgery knees than the normal joint without surgery. For Safranin-O/Fast green...
Safety standards and biodistribution studies of stem cell therapy are urgently needed before we can bring regenerative stem cell treatment for KOA from the bench to the bedside. However, the pathological environment of disease plays an important role in the persistence and biodistribution of transplanted haMSCs10. Recently, our group demonstrated that intra-articular injection of haMSCs persisted longer in a pathological KOA environment than did injections under normal conditions...
Meng Li, Ming Hao and Wen Wang are current employees and stock option holders of Cellular Biomedicine Group (Nasdaq: CBMG). The other authors declare no conflict of interest.
The current study was supported by Shanghai Innovation Funding (1402H294300) sponsored by the Science and Technology Commission of Shanghai Municipality (CN) to Dr. Wen Wang. We would like to thank Dr. Guangdong Zhou (National Tissue Engineering Center of China) for his technical assistance and scientific advice for this manuscript. We would also like to thank Mr. Huitang Xia (Shanghai Ninth People’s Hospital) for his help in animal welfare.
Name | Company | Catalog Number | Comments |
Matrx VMR animal anesthesia system | Midmark | VIP3000 | |
4-0 suture | Shanghai Jinhuan | KC439 | |
Razor | Pritech | LD-9987 | |
Gentamicin | Zhejiang Jindakang Animal Health Product Co., Ltd. | None | |
0.9% Sodium chloride solution | Hunan Kelun Pharmaceutical Co., Ltd. | H43020455 | |
Penicillin | Shanghai Kangfu chemical pharmaceutical Co., Ltd. | None | |
Buprenorphine | Tianjin Pharmaceutical Research Institute Pharmaceutical Co., Ltd. | None | |
Paraformaldehyde | Sigma-Aldrich | 16005 | Dilute to final concentration of 10% in PBS |
EDTA | Sigma-Aldrich | E9884 | Dilute to final concentration of 20% in PBS |
0.1% Hematoxylin Solution, Mayer’s | Sigma-Aldrich | MHS16 | |
0.5% Eosin Y solution, alcoholic | Sigma-Aldrich | HT110116 | |
Safranin O | Sigma-Aldrich | S8884 | |
Fast Green | Sigma-Aldrich | F7258 | |
Shandon Excelsior ESTM Tissue Processor | Thermo Fisher | A78400006 | |
Shandon Histocentre™ 3 Tissue Embedding Center | Thermo Fisher | B64100010 | |
Fully Automated Rotary Microtome | Leica | RM2255 | |
DiD | Molecular Probes, Life Technologies | V-22887 | |
D-MEM High Glucose | Sigma-Aldrich | D5648 | |
PBS | GIBCO, Life Technologies | 14190-144 | |
0.25% Trypsin-EDTA | Invitrogen | 25200-114 | |
10 cm Petri Dish | Corning | V118877 | |
Centrifuge | Beckman | Optima MAX-TL | |
Fluorescent microscope | Olympus | BX53 | |
0.4% Trypan Blue solution | Sigma-Aldrich | 93595 | |
Titetamme | Virbac (Zoletil 50) | 1000000188 | |
Zolazepam | Virbac (Zoletil 50) | 1000000188 | |
Sterile hyposermic syringe for single use 26G | Shanghai Misawa Medical Industry | None | |
IVIS Spectrum In Vivo Imaging System | PerkinElmer | 124262 | |
Living Imaging 4.0 software | PerkinElmer | None |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved