A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Valve-sparing aortic root replacement has the advantage of preserving the patient's own aortic valve. The complexity of the reported techniques to date restricts their use to a limited number of cardiac surgeons. This protocol describes step-by-step a standardized technique reproducible by a greater number of cardiac surgeons.
Despite the obvious advantages of the preservation of a normal aortic valve during aortic root replacement, the complexity of valve sparing procedures prevents a number of cardiac surgeons from incorporating them into their practice. The aim of this protocol is to describe a simplified and user-friendly technique of an aortic valve-sparing root replacement (VSRR) procedure by re-implantation of the aortic valve. Proper selection of patients and limitations of the technique are discussed.
In 54 consecutive patients, normal appearing aortic valves were re-implanted in a commercially available polyester prosthesis with pre-shaped sinuses by a simplified and standardized technique. Placement of the first row of the proximal suture line, choice of the prosthesis size, and adjustment of the height of the commissures of the patient to the fixed height of the sinus portion of the prosthesis were slightly modified from the reference techniques with the aim of increasing its feasibility for use by other cardiac surgeons. Early mortality and morbidity as well as 5-year survival, freedom from aortic valve reoperation, and freedom from recurrent moderate regurgitation were collected in all patients.
Thirty-day mortality, re-sternotomy for bleeding, re-sternotomy for mediastinitis, and the incidence of stroke were very low, 1.8% for each (1 of 54). No patient required permanent pace-maker implantation. At 5 years, survival, freedom from aortic valve reoperation, and freedom from recurrent moderate regurgitation were 97.5%, 95.2%, and 91.6%, respectively.
Mid-term results of our standardized technique of re-implantation of the aortic valve for valve-sparing aortic root replacement are very good and compare with more complex techniques reported by experienced surgeons. By following the present protocol of the standardized re-implantation technique, a greater number of cardiac surgeons can perform this procedure with comparable good results.
During the past twenty years, the surgical treatment of aortic root aneurysm with normal or near-normal aortic cusps has evolved thanks to a series of surgical procedures aiming at preservation of the native aortic valve1,2,3,4,5. Valve-sparing aortic root replacement is basically accomplished either by re-implantation of the aortic valve inside a synthetic graft1,3,4,6 or by a remodeling technique which restores the physiological anatomy of the aortic root2. Despite the obvious advantages of the preservation of a normal aortic valve during aortic root replacement, many cardiac surgeons replace the aortic valve with either mechanical or biological valve substitutes. According to the Society of Thoracic Surgeons database, only 14% of patients who underwent aortic root replacement in the United States between 2004 and 2010 received a valve-sparing procedure7.
In the original re-implantation technique, the aortic valve is sutured inside a tubular horizontally crimped synthetic graft8. Although this technique stabilizes the aortic annulus, it eliminates the sinuses of Valsalva. In order to recreate the sinuses of Valsalva, this technique has undergone several modifications by its inventor as well as other authors9. A variation of this technique has been proposed by Rama et al., in which the remnants of the aortic wall supporting the commissures are sutured into longitudinal openings made in the tubular polyethylene terephthalate graft4.
The remodeling technique achieves a more anatomical reconstruction of the aortic root but leaves the aortic annulus unsupported and exposed to future dilatation. Various surgical techniques have been designed to tailor the aortic annular base in aortic root remodeling, including sub-commissural aortic annuloplasty10, circumferential suture annuloplasty11, and internal or external annuloplasty by synthetic partial or complete ring12.
Despite the excellent results reported by experienced authors, the complexity and periodical modifications of these procedures hamper their reproducibility by other cardiac surgeons and thus prevent a number of suitable patients to benefit from retaining their own aortic valve. In order to enhance the reproducibility of the re-implantation technique, we have used a commercially available synthetic graft with an uncrimped, pre-shaped sinus portion and simplified the implantation technique. The aim of this protocol is to describe in detail this standardized and reproducible technique with particular emphasis on the management of the first row of the proximal suture line and of the placement of the commissures inside the graft and the choice of the graft size. Early outcomes and mid-term results are presented. Proper selection of patients for and limitations of this procedure are discussed.
The protocol follows the institutional guidelines of the human research ethics committee.
1. Pre-selection of the Patient
2. Preparation for Surgery
NOTE: Preparation for surgery follows the institutional guidelines and recommendations for adult cardiac surgery patients.
3. Surgery
4. Post-operative Patient Care
Statistical Analysis:
Continuous variables are presented as mean ± standard deviation and categorical variables as percentages. Kaplan-Meier curves are calculated for survival, freedom from aortic valve reoperation, and freedom from recurrent moderate regurgitation using a commercially available software package.
Patient Population:
In patients presenting with aortic root aneurysm with normal or near-normal aortic cusps, valve-sparing aortic root replacement is a more physiological and hence attractive alternative to composite graft replacement of the aorta and the aortic valve with mechanical or tissue valve. In this protocol, we describe a simplified technique of valve-sparing aortic root replacement by re-implantation of the aortic valve. In contrast to the majority of the previously reported techniques3,
The authors have nothing to disclose.
This work was supported by a grant (N° 32117) of the Swiss Cardiovascular Foundation to RT.
Name | Company | Catalog Number | Comments |
Heart surgery infrastructure: | |||
Heart Lung Machine | Stockert | SIII | |
EOPA 24Fr. arterial cannula | Medtronic | 77624 | |
Atrial caval venous cannula 34/48Fr. | Medtronic | 93448 | |
LV vent catheter 17Fr. | Edwards | E061 | |
Antegrade 9Fr. cardioplegia cannula | Edwards | AR012V | |
Retrograde 14Fr. cardioplegia cannula | Edwards | NPC014 | |
Coronary artery ostial cannula 90° | Medtronic | 30155 | |
Coronary artery ostial cannula 45° | Medtronic | 30255 | |
Name | Company | Catalog Number | Comments |
Pre-shaped sinus graft | |||
Cardioroot 28 mm | Maquet | HEWROOT0028 | |
Cardioroot 30 mm | Maquet | HEWROOT0030 | |
Cardioroot 32 mm | Maquet | HEWROOT0032 | |
Name | Company | Catalog Number | Comments |
Electrocautery | Covidien | Force FX | |
Name | Company | Catalog Number | Comments |
Sutures: | |||
Polypropylene 4/0 | Ethicon | 8871H | |
Polypropylene 5/0 | Ethicon | 8870H | |
Polypropylene 6/0 | Ethicon | EH7400H | |
Braided polyesther 2/0 ligature with polybutylate coating | Ethicon | X305H | |
Name | Company | Catalog Number | Comments |
Micro knife Sharpoint | TYCO Healthcare PTY | 78-6900 | |
Name | Company | Catalog Number | Comments |
Drugs: | |||
Midazolam | Roche Pharma | N05CD08 | |
Rocuronium | MSD Merck Sharp & Dohme | M03AC09 | |
Propofol | Fresenius Kabi | N01AX10 | |
Fentanil | Actavis | N01AH01 | |
Heparin | Braun | B01AB01 | |
Protamin | MEDA Pharmaceutical | V03AB14 | |
Name | Company | Catalog Number | Comments |
Instruments: | |||
Cooley vascular aortic clamp | Delacroix-Chevalier | DC40810-16 | |
Dissection forceps Carpentier | Delacroix-Chevalier | DC13110-28 | |
Scissors Metzenbaum | Delacroix-Chevalier | B351751 | |
Needle holder Ryder | Delacroix-Chevalier | DC51130-20 | |
Dissection forceps DeBakey | Delacroix-Chevalier | DC12000-21 | |
Micro needle holder Jacobson | Delacroix-Chevalier | DC50002-21 | |
Micro scisors Jacobson | Delacroix-Chevalier | DC20057-21 | |
Lung retractor | Delacroix-Chevalier | B803990 | |
Allis clamp | Delacroix-Chevalier | DC45907-25 | |
O’Shaugnessy Dissector | Delacroix-Chevalier | B60650 | |
18 blade knife | Delacroix-Chevalier | B130180 | |
Leriche haemostatic clamp | Delacroix-Chevalier | B86555 | |
Name | Company | Catalog Number | Comments |
Data analysis | |||
Kaplan Meier curves | GraphPad | Prism 7 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved