JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Valve-sparing aortic root replacement has the advantage of preserving the patient's own aortic valve. The complexity of the reported techniques to date restricts their use to a limited number of cardiac surgeons. This protocol describes step-by-step a standardized technique reproducible by a greater number of cardiac surgeons.

Abstract

Despite the obvious advantages of the preservation of a normal aortic valve during aortic root replacement, the complexity of valve sparing procedures prevents a number of cardiac surgeons from incorporating them into their practice. The aim of this protocol is to describe a simplified and user-friendly technique of an aortic valve-sparing root replacement (VSRR) procedure by re-implantation of the aortic valve. Proper selection of patients and limitations of the technique are discussed.

In 54 consecutive patients, normal appearing aortic valves were re-implanted in a commercially available polyester prosthesis with pre-shaped sinuses by a simplified and standardized technique. Placement of the first row of the proximal suture line, choice of the prosthesis size, and adjustment of the height of the commissures of the patient to the fixed height of the sinus portion of the prosthesis were slightly modified from the reference techniques with the aim of increasing its feasibility for use by other cardiac surgeons. Early mortality and morbidity as well as 5-year survival, freedom from aortic valve reoperation, and freedom from recurrent moderate regurgitation were collected in all patients.

Thirty-day mortality, re-sternotomy for bleeding, re-sternotomy for mediastinitis, and the incidence of stroke were very low, 1.8% for each (1 of 54). No patient required permanent pace-maker implantation. At 5 years, survival, freedom from aortic valve reoperation, and freedom from recurrent moderate regurgitation were 97.5%, 95.2%, and 91.6%, respectively.

Mid-term results of our standardized technique of re-implantation of the aortic valve for valve-sparing aortic root replacement are very good and compare with more complex techniques reported by experienced surgeons. By following the present protocol of the standardized re-implantation technique, a greater number of cardiac surgeons can perform this procedure with comparable good results.

Introduction

During the past twenty years, the surgical treatment of aortic root aneurysm with normal or near-normal aortic cusps has evolved thanks to a series of surgical procedures aiming at preservation of the native aortic valve1,2,3,4,5. Valve-sparing aortic root replacement is basically accomplished either by re-implantation of the aortic valve inside a synthetic graft1,3,4,6 or by a remodeling technique which restores the physiological anatomy of the aortic root2. Despite the obvious advantages of the preservation of a normal aortic valve during aortic root replacement, many cardiac surgeons replace the aortic valve with either mechanical or biological valve substitutes. According to the Society of Thoracic Surgeons database, only 14% of patients who underwent aortic root replacement in the United States between 2004 and 2010 received a valve-sparing procedure7.

In the original re-implantation technique, the aortic valve is sutured inside a tubular horizontally crimped synthetic graft8. Although this technique stabilizes the aortic annulus, it eliminates the sinuses of Valsalva. In order to recreate the sinuses of Valsalva, this technique has undergone several modifications by its inventor as well as other authors9. A variation of this technique has been proposed by Rama et al., in which the remnants of the aortic wall supporting the commissures are sutured into longitudinal openings made in the tubular polyethylene terephthalate graft4.

The remodeling technique achieves a more anatomical reconstruction of the aortic root but leaves the aortic annulus unsupported and exposed to future dilatation. Various surgical techniques have been designed to tailor the aortic annular base in aortic root remodeling, including sub-commissural aortic annuloplasty10, circumferential suture annuloplasty11, and internal or external annuloplasty by synthetic partial or complete ring12.

Despite the excellent results reported by experienced authors, the complexity and periodical modifications of these procedures hamper their reproducibility by other cardiac surgeons and thus prevent a number of suitable patients to benefit from retaining their own aortic valve. In order to enhance the reproducibility of the re-implantation technique, we have used a commercially available synthetic graft with an uncrimped, pre-shaped sinus portion and simplified the implantation technique. The aim of this protocol is to describe in detail this standardized and reproducible technique with particular emphasis on the management of the first row of the proximal suture line and of the placement of the commissures inside the graft and the choice of the graft size. Early outcomes and mid-term results are presented. Proper selection of patients for and limitations of this procedure are discussed.

Protocol

The protocol follows the institutional guidelines of the human research ethics committee.

1. Pre-selection of the Patient

  1. Identify patients with dilation of the sinuses of Valsalva not exceeding 60 mm using the pre-operative computer tomography (CT) scan.
  2. Next, select among these patients a subgroup with normal or near-normal appearing aortic valve cusps on their pre-operative echocardiography.
  3. Inform the staff of the possibility of a valve sparing aortic root replacement procedure.
  4. Make the final decision intra-operatively after inspection of the aortic valve. Verify the absence of calcifications of the cusps and/or thickening and retraction of their free margin.

2. Preparation for Surgery

NOTE: Preparation for surgery follows the institutional guidelines and recommendations for adult cardiac surgery patients.

  1. Prepare the surgical suite and patient for surgery as previously described13.

3. Surgery

  1. Access to the heart through a median sternotomy, as previously described13 (Figure 1A).
  2. Prepare the aortic root for replacement.
    1. Grab the ascending aorta at the sino-tubular junction with Carpentier dissection forceps. Make a horizontal opening with a #11-blade knife.
    2. Complete the aortotomy circumferentially and horizontally with Metzenbaum scissors.
    3. After having transected the aorta, verify the absence of calcifications of the cusps and/or thickening and retraction of their free margin. Check the coronary ostia.
    4. Dissect free from the surrounding tissue the outer aspect of the non-coronary sinus down to the roof of the left atrium.
    5. Detach the right coronary ostium from the aortic wall with a generous circular patch, leaving 5 mm of the aortic wall remnant attached to the insertion of the cusp (Figure 1B).
    6. Free the commissure between the non-coronary and right coronary sinus from the surrounding tissue.
    7. Dissect free the outer aspect of the aortic wall remnant of the right coronary sinus from the outflow tract of the right ventricle.
    8. Free the outer aspect of the commissure between the non-coronary and left coronary sinus down to the roof of the left atrium.
    9. Excise the aortic wall of the non-coronary sinus leaving 5 mm of the aortic wall remnant attached to the insertion of the cusp.
    10. Separate the outer aspect of the commissure between the right and left coronary sinus from the surrounding tissue. Take care not to injure the pulmonary artery.
    11. Detach the left coronary ostium from the aortic wall with a generous circular patch, leaving 5 mm of the aortic wall remnant attached to the insertion of the cusp (Figure 1B). Mobilize the left main coronary artery over its first 10 mm.
    12. Dissect free the outer aspect of the aortic wall remnant of the left coronary sinus from the roof of the left atrium.
    13. Put a mattress 4/0 polypropylene stay suture on top of each commissure.
  3. Start the proximal implantation of the prosthesis.
    1. Perform the first row of the proximal anastomosis by 12 mattress non-pledgeted 2/0 braided polyester sutures. Put these sutures circumferentially in a horizontal plane 1 - 2 mm below the insertion of the cusps and at the base of the commissural triangles except for the commissure between the non-coronary and right coronary sinus (Figure 2A).
    2. Put the first mattress suture at the base of the commissural triangle between the non-coronary and left coronary sinus. Put the second and third sutures 1 - 2 mm below the insertion of the non-coronary cusp, in the direction of the commissure between the non-coronary and right coronary sinus.
    3. Place the forth suture next to the third one in the direction of the commissure between the non-coronary and right coronary sinus by avoiding the base of the commissural triangle between the non-coronary and right coronary sinus and thus not compromising the membranous septum.
    4. Start the first suture of the right coronary sinus 2 mm away from the base of the commissural triangle of the commissure between the non-coronary and right coronary sinus, thus skipping the membranous septum (Figure 2B).
    5. Put the following sutures of the right coronary sinus in the direction of the commissure between the left and right coronary sinus.
    6. Place the forth suture of the right coronary sinus at the base of the commissural triangle of the commissure between the left and right coronary sinus.
    7. Next, pass 4 equidistant mattress sutures 1 - 2 mm below the insertion of the left coronary cusp for fixation of the left coronary sinus.
    8. To choose the size of the prosthesis, add 4 to 6 mm to the size of a commercially available biological valve sizer which passes comfortably through the left ventricular-aortic valve junction.
    9. Determine the commissural height between the commissural stay suture and the mattress suture at the basis of the commissural triangle. To adjust the commissural heights of the patient to the pre-shaped sinuses of the prosthesis, pass the 4/0 polypropylene commissural stay sutures inside-outside of the prosthesis in the vicinity of its sino-tubular junction.
    10. Be aware that the height of the commissure between the left and right coronary sinus is often slightly less than that of the other two. Trim circumferentially the lower neck of the prosthesis 2 mm below the measured commissural height to adapt the height of the sinuses of the prosthesis to that of the commissures and to be able to pass the first row of the mattress sutures through the prosthesis.
    11. Now pass the mattress sutures inside-out into the prosthesis. Slide down the prosthesis thus placing the valve inside it (Figure 3A). Tie the mattress sutures gently and cut them.
    12. Start the second row of the proximal anastomosis by three 5/0 polypropylene running sutures, one for each sinus.
    13. Begin the first 5/0 polypropylene running suture at the nadir of the left coronary sinus to fix the remnant of the aortic wall inside the prosthesis by following in parallel the insertion of the cusp up to the commissure between the left and right coronary and then up to the commissure between the left and non-coronary sinus. Put the 2 ends under slight tension.
    14. Continue with the second 5/0 polypropylene running suture at the nadir of the right coronary sinus to fix the remnant of the aortic wall inside the prosthesis by following in parallel the insertion of the cusp up to the commissure between the right and left coronary and then up to the commissure between the right and non-coronary sinus. Put the 2 ends under slight tension.
    15. Place the third 5/0 polypropylene running suture at the nadir of the non-coronary sinus to fix the remnant of the aortic wall inside the prosthesis by following in parallel the insertion of the cusp up to the commissure between the non-coronary and left coronary sinus.
    16. Finish the second row of the proximal anastomosis by fixing the remnant of the aortic wall in parallel to the insertion of the cusp up to the commissure between the non-coronary and right coronary sinus. Tie at each commissure the two suture-ends together (Figure 3B).
    17. Check the absence of aortic regurgitation by filling the prosthesis with saline and applying suction to the vent placed through the right pulmonary vein and the mitral valve into the left ventricle.
  4. Reconnect the coronary ostia to the prosthesis (Figure 4).
    1. Create a button hole in the left sinus of the prosthesis adjusted to the size of the left coronary ostium patch.
    2. Begin the anastomosis at the nadir of the button hole in the prosthesis from inside out and to the left coronary ostium from outside in by a 6/0 polypropylene running suture.
    3. Place the second stitch 2 mm to the right of the first one from inside out of the prosthesis and outside in of the left coronary ostium up to the mid-height of the right ridge of the anastomosis. Put the suture end under light tension.
    4. Continue the running suture on the left ridge of the anastomosis from outside in the prosthesis and from inside out of the left coronary ostium to meet the other end. Tie the two ends together.
    5. Create a button hole in the right sinus of the prosthesis adjusted to the size of the right coronary ostium patch.
    6. Connect the right coronary ostium to the prosthesis by a 6/0 polypropylene running suture, starting at the nadir of the right coronary ostium from inside out and into the prosthesis from outside in.
    7. Continue the suture to the mid-height of the right ridge of the anastomosis and put the end under light tension.
    8. Complete the anastomosis by running the left ridge of the anastomosis to meet the other end. Tie the two ends together.
  5. Perform the distal anastomosis (Figure 4).
    1. Start the anastomosis at the nadir of the distal end of the prosthesis from inside out and into the distal ascending aorta from outside in by a 5/0 polypropylene running suture. Run up the suture first to the mid-height of the right ridge of the anastomosis.
    2. Complete the distal anastomosis by running the suture on the left ridge to meet the other end. Tie the ends together.
    3. Tilt the operating table in the Trendelenburg position. Let the pump flow reduce to 50% of the full flow and slowly remove the aortic cross-clamp under gentle aspiration of the left ventricular vent.
    4. Resume the full flow of the cardio-pulmonary bypass. Check the operative field for undue surgical bleeding.
    5. Rewarm the patient to 37 °C and separate the patient from the cardio-pulmonary bypass. Stabilize blood pressure, neutralize heparin by protamine infused IV in a 1:1 ratio (3 mg/kg corresponding to 300 U/kg of heparin).
    6. Check for hemostasis and put the chest drainage as needed. Close the chest in standard fashion by reapproximating the sternum with sternal wires and the soft tissue with absorbable sutures in two layers13.

4. Post-operative Patient Care

  1. Following the transfer to the intensive care unit, provide the patient with standard post-operative care for cardiac surgical operation on aortic root13.

Results

Statistical Analysis:

Continuous variables are presented as mean ± standard deviation and categorical variables as percentages. Kaplan-Meier curves are calculated for survival, freedom from aortic valve reoperation, and freedom from recurrent moderate regurgitation using a commercially available software package.

Patient Population:

Discussion

In patients presenting with aortic root aneurysm with normal or near-normal aortic cusps, valve-sparing aortic root replacement is a more physiological and hence attractive alternative to composite graft replacement of the aorta and the aortic valve with mechanical or tissue valve. In this protocol, we describe a simplified technique of valve-sparing aortic root replacement by re-implantation of the aortic valve. In contrast to the majority of the previously reported techniques3,

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by a grant (N° 32117) of the Swiss Cardiovascular Foundation to RT.

Materials

NameCompanyCatalog NumberComments
Heart surgery infrastructure:
Heart Lung MachineStockertSIII
EOPA 24Fr. arterial cannulaMedtronic77624
Atrial caval venous cannula 34/48Fr.Medtronic93448
LV vent catheter 17Fr.EdwardsE061
Antegrade 9Fr. cardioplegia cannulaEdwardsAR012V
Retrograde 14Fr. cardioplegia cannula EdwardsNPC014 
Coronary artery ostial cannula 90°Medtronic30155
Coronary artery ostial cannula 45°Medtronic30255
NameCompanyCatalog NumberComments
Pre-shaped sinus graft
Cardioroot 28 mmMaquetHEWROOT0028
Cardioroot 30 mmMaquetHEWROOT0030
Cardioroot 32 mmMaquetHEWROOT0032
NameCompanyCatalog NumberComments
ElectrocauteryCovidienForce FX
NameCompanyCatalog NumberComments
Sutures:
Polypropylene 4/0Ethicon8871H
Polypropylene 5/0Ethicon8870H
Polypropylene 6/0EthiconEH7400H
Braided polyesther 2/0 ligature with polybutylate coating EthiconX305H
NameCompanyCatalog NumberComments
Micro knife Sharpoint TYCO Healthcare PTY 78-6900
NameCompanyCatalog NumberComments
Drugs:
MidazolamRoche PharmaN05CD08
RocuroniumMSD Merck Sharp & Dohme M03AC09
PropofolFresenius KabiN01AX10
FentanilActavisN01AH01
HeparinBraunB01AB01
ProtaminMEDA PharmaceuticalV03AB14
NameCompanyCatalog NumberComments
Instruments:
Cooley vascular aortic clampDelacroix-ChevalierDC40810-16
Dissection forceps CarpentierDelacroix-ChevalierDC13110-28 
Scissors MetzenbaumDelacroix-ChevalierB351751
Needle holder RyderDelacroix-ChevalierDC51130-20 
Dissection forceps DeBakeyDelacroix-ChevalierDC12000-21 
Micro needle holder JacobsonDelacroix-ChevalierDC50002-21 
Micro scisors JacobsonDelacroix-ChevalierDC20057-21 
Lung retractorDelacroix-ChevalierB803990
Allis clampDelacroix-ChevalierDC45907-25 
O’Shaugnessy DissectorDelacroix-ChevalierB60650
18 blade knifeDelacroix-ChevalierB130180
Leriche haemostatic clampDelacroix-ChevalierB86555
NameCompanyCatalog NumberComments
Data analysis
Kaplan Meier curvesGraphPadPrism 7

References

  1. David, T. E., Feindel, C. M., Bos, J. Repair of the aortic valve in patients with aortic insufficiency and aortic root aneurysm. J Thorac Cardiovasc Surg. 109 (2), 345-352 (1995).
  2. Yacoub, M. H., Gehle, P., Chandrasekaran, V., Birks, E. J., Child, A., Radley-Smith, R. Late results of a valve-preserving operation in patients with aneurysms of the ascending aorta and root. J Thorac Cardiovasc Surg. 115 (5), 1080-1090 (1998).
  3. De Paulis, R., et al. One-year appraisal of a new aortic root conduit with sinuses of Valsalva. J Thorac Cardiovasc Surg. 123 (1), 33-39 (2002).
  4. Rama, A., Rubin, S., Bonnet, N., Gandjbakhch, I. New technique of aortic root reconstruction with aortic valve annuloplasty in ascending aortic aneurysm. Ann Thorac Surg. 83 (5), 1908-1910 (2007).
  5. Richardt, D., Karluss, A., Schmidtke, C., Sievers, H. H., Scharfschwerdt, M. A new sinus prosthesis for aortic valve-sparing maintaining the shape of the root at systemic pressure. Ann Thorac Surg. 89 (3), 943-946 (2010).
  6. Schmidtke, C., et al. First clinical results with the new sinus prosthesis used for valve-sparing aortic root replacement. Eur J Cardiothorac Surg. 43 (3), 585-590 (2013).
  7. Stamou, S. C., Williams, M. L., Gunn, T. M., Hagberg, R. C., Lobdell, K. W., Kouchoukos, N. T. Aortic root surgery in the United States: a report from the Society of Thoracic Surgeons database. J Thorac Cardiovasc Surg. 149 (1), 116-122 (2015).
  8. David, T. E., Feindel, C. M. An aortic valve-sparing operation for patients with aortic incompetence and aneurysm of the ascending aorta. J Thorac Cardiovasc Surg. 103 (4), 617-621 (1992).
  9. Hopkins, R. A. Aortic valve leaflet sparing and salvage surgery: evolution of techniques for aortic root reconstruction. Eur J Cardiothorac Surg. 24 (6), 886-897 (2003).
  10. Mve Mvondo, C., et al. Surgical treatment of aortic valve regurgitation secondary to ascending aorta aneurysm: is adjunctive subcommissural annuloplasty necessary?. Ann Thorac Surg. 95 (2), 586-592 (2013).
  11. Aicher, D., Schneider, U., Schmied, W., Kunihara, T., Tochii, M., Schäfers, H. J. Early results with annular support in reconstruction of the bicuspid aortic valve. J Thorac Cardiovasc Surg. 145 (3 Suppl), S30-S34 (2013).
  12. Lansac, E., et al. Aortic prosthetic ring annuloplasty: a useful adjunct to a standardized aortic valve-sparing procedure?. Eur J Cardiothorac Surg. 29 (4), 537-544 (2006).
  13. Tavakoli, R., Jamshidi, P., Gassmann, M. Full-root aortic valve replacement by stentless aortic xenografts in patients with small aortic root. J Vis Exp. (123), e55632 (2017).
  14. Zoghbi, W. A., et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 16 (7), 777-802 (2003).
  15. Cohle, S. D., Delavan, J. W. Coronary artery compression by teflon pledget granuloma following aortic valve replacement. J Forensic Sci. 42 (5), 945-946 (1997).
  16. Vallabhajosyula, P., et al. Geometric orientation of the aortic neoroot in patients with raphed bicuspid aortic valve disease undergoing primary cusp repair and a root reimplantation procedure. Eur J Cardiothorac Surg. 45 (1), 174-180 (2014).
  17. David, T. E., David, C. M., Feindel, C. M., Manlhiot, C. Reimplantation of the aortic valve at 20 years. J Thorac Cardiovasc Surg. 153 (2), 232-238 (2017).
  18. Zehr, K. J. Form ever follows function. J Thorac Cardiovasc Surg. 151 (1), 120-121 (2016).
  19. De Paulis, R., et al. Long-term results of the valve reimplantation technique using a graft with sinuses. J Thorac Cardiovasc Surg. 151 (1), 112-119 (2016).
  20. Gleason, T. G. New graft formulation and modification of the David reimplantation technique. J Thorac Cardiovasc Surg. 130 (2), 601-603 (2005).
  21. Demers, P., Miller, D. C. Simple modification of "T. David-V" valve-sparing aortic root replacement to create graft pseudosinuses. Ann Thorac Surg. 78 (4), 1479-1481 (2004).
  22. David, T. E., Maganti, M., Armstrog, S. Aortic root aneurysm: principles of repair and long-term follow-up. J Thorac Cardiovasc Surg. 140 (6S), S14-S19 (2010).
  23. Shrestha, M., et al. Long-term results after aortic valve-sparing operation (David I). Eur J Cardiothorac Surg. 41 (1), 56-61 (2012).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Aortic Valve Re implantationValve sparing Aortic Root ReplacementStandardized TechniqueProximal Suture ManagementSingle Graft With Pre shaped SinusPatient SelectionMedian SternotomyAortotomyCoronary OstiaAortic Wall RemnantCommissure DissectionPulmonary ArteryLeft Main Coronary Artery

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved