A subscription to JoVE is required to view this content. Sign in or start your free trial.
The goal of this protocol is to describe in detail the technique of minimally invasive aortic valve replacement through a right anterior mini-thoracotomy and central aortic cannulation. This technique can potentially enhance patients' comfort and, by reducing post-operative morbidity, promote lowering the length of stay and global costs.
Aortic valve stenosis has become the most prevalent valvular heart disease in developed countries, and is due to the aging of these populations. The incidence of the pathology increases with growing age after 65 years. Conventional surgical aortic valve replacement through median sternotomy has been the gold standard of patient care for symptomatic aortic valve stenosis. However, as the risk profile of patients worsens, other therapeutic strategies have been introduced in an attempt to maintain the excellent results obtained by the established surgical treatment. One of these approaches is represented by transcatheter aortic valve implantation. Although the outcomes of high-risk patients undergoing treatment for symptomatic aortic valve stenosis have improved with transcatheter aortic valve replacement, many patients with this condition remain candidates for surgical aortic valve replacement. In order to reduce the surgical trauma in patients who are candidates for surgical aortic valve replacement, minimally invasive approaches have garnered interest during the past decade. Since the introduction of right anterior thoracotomy for aortic valve replacement in 1993, right anterior mini-thoracotomy and upper hemi-sternotomy have become the predominant incisional approaches among cardiac surgeons performing minimal access aortic valve replacement. Beside the location of the incision, the arterial cannulation site represents the second major landmark of minimal access techniques for aortic valve replacement. The two most frequently used arterial cannulation sites include central aortic and peripheral femoral approaches. With the purpose of reducing surgical trauma in these patients, we have opted for a right anterior mini-thoracotomy approach with a central aortic cannulation site. This protocol describes in detail a technique for minimally invasive aortic valve replacement and provides recommendations for patient selection criteria, including cardiac computer tomography measurements. The indications and limitations of this technique, as well as its alternatives, are discussed.
Among heart valve lesions diagnosed as hemodynamically relevant and clinically receiving particular attention, aortic valve stenosis is the most common valvular pathology in the United States and developed countries1,2. In the Cardiovascular Health Study, 2% of patients had frank aortic stenosis, with a clear increase in prevalence with growing age: 1.3% in patients aged 65-75 years, 2.4% in those aged 75-85 years, and 4% in patients older than 85 years1. For symptomatic patients presenting with severe aortic valve stenosis, aortic valve replacement is a Class I recommendation in the guidelines of the American Heart Association for the management of patients with valvular heart disease3.
Conventional surgical aortic valve replacement through median full sternotomy (FS) has been established as the gold standard for treating aortic valve stenosis with excellent results in terms of morbidity and mortality4. These results have encouraged the extension of therapeutic indications to older patients and patients with a higher risk profile. A number of treatment strategies have been implemented in these patient subsets to maintain the same good results achieved by conventional surgical aortic valve replacement in the general population. Among these alternative treatment modalities, transcatheter aortic valve implantation (TAVI) was introduced in 2002 by Cribier and colleagues5. Performed initially in moribund patients, TAVI has rapidly emerged as the treatment of choice for patients with severe aortic stenosis who are not suitable for conventional surgical aortic valve replacement6,7, or as a less invasive approach for surgery for patients at high risk8,9.
Despite the improved outcomes of TAVI in selected patient subsets, many patients with symptomatic aortic valve stenosis are still candidates for surgical aortic valve replacement. In these patients, FS aortic valve replacement is the most frequently used approach by cardiac surgeons. Nevertheless, various 'minimally invasive' techniques have been developed with the rationale of reducing surgical trauma10. All these minimal-access techniques have aimed at improving patient comfort by reducing post-operative pain and accelerating patient recovery by shortening the hospital stay and potentially saving global costs10. Among minimally invasive incisional approaches upper hemi-sternotomy (UHS) and right anterior mini-thoracotomy (RAMT) have become the predominant techniques reported in the literature11. Right anterior mini-thoracotomy for aortic valve replacement was initially reported by Benetti et al.12, and upper hemi-sternotomy was first described by several authors11. In addition to incisional alternatives, two arterial perfusion strategies are currently used: i) peripheral femoral arterial cannulation, which is more frequently employed than ii) central aortic cannulation.
In spite of reported improvement in patient outcomes following minimally invasive aortic valve replacement, concerns about the disadvantages of restricted operative field and peripheral arterial perfusion strategies13 lead many cardiac surgeons to not let their patients benefit from potential advantages of minimal access approaches for aortic valve replacement. The goal of this protocol is to describe in detail this technique of minimally invasive aortic valve replacement through a right anterior mini-thoracotomy without rib resection/fracture, and with central aortic cannulation for arterial perfusion. By following this protocol, a larger number of cardiac surgeons can perform right anterior mini-thoracotomy for aortic valve replacement in certain patient groups. Patient selection and limitations of the technique are discussed. Early results are compared to those of a cohort of patients undergoing isolated aortic valve replacement by full sternotomy.
The protocol follows our institutional guidelines of the human research ethics committee.
1. Patient Selection (Table 1)
2. Preparation for Surgery
3. Surgery
4. Post-Operative Patient Care
Statistical analysis is done for continuous variables (presented as means ± SD) in Table 2, Table 3, and Table 4 using the non-parametric Mann Whitney test. Categorical variables are presented as percentages in Table 2, Table 3, and Table 4, and are compared by the Chi-square test. The statistical analyses are performed using commercially available software, with a statistical signif...
In this protocol, we describe in detail the technique of right anterior mini-thoracotomy for isolated aortic valve replacement, and highlight the patient selection criteria for this procedure. As for any other therapeutic intervention, proper patient selection is the key to successful accomplishment of the procedure. The optimal CT measurements for consideration of patients for this technique are precisely described in this protocol, and are based on experience and consider the extensive work of Dr. Glauber and coworkers...
The authors have nothing to disclose.
This work was supported by a grant (N° 32119) of the Swiss Cardiovascular Foundation to RT.
Name | Company | Catalog Number | Comments |
Heart surgery infrastructure: | |||
Heart Lung Machine | Stockert | SIII | |
EOPA 24Fr. arterial cannula | Medtronic | 77624 | |
FemFlex arterial cannula | Edwards | FEMII20A | |
Quickdraw 25Fr. femoral venous cannula | Edwards | QD25 | |
Biomedicus 25Fr. Nextgen venous cannula | Medtronic | 96670-125 | |
LV vent catheter 17Fr. | Edwards | E061 | |
Antegrade 9Fr. cardioplegia cannula | Edwards | AR012V | |
Coronary artery ostial cannula 90° | Medtronic | 30155 | |
Coronary artery ostial cannula 45° | Medtronic | 30255 | |
Soft tissue retractor | |||
STAR soft tissue atraumatic retractor | Estech | EC400220 | |
Soft tissue retractor | Edwards | TRM | |
Electrocautery | Covidien | Force FXTM | |
Sutures: | |||
Polypropylene 4/0 | Ethicon | 8871H | |
Polypropylene 5/0 | Ethicon | 8870H | |
Braided polyesther 2/0 ligature with polybutylate coating | Ethicon | X305H | |
Braided polyesther2/0 with pledgets V5 | Ethicon | MEH7715N | |
Braided polyglactin 2/0 suture | Ethicon | V114H | |
Braided polyglactin 0 suture | Ethicon | W9996 | |
Drugs: | |||
Midazolam | Roche Pharma | N05CD08 | |
Rocuronium | MSD Merck Sharp & Dohme | M03AC09 | |
Propofol | Fresenius Kabi | N01AX10 | |
Fentanil | Actavis | N01AH01 | |
Heparin | Braun | B01AB01 | |
Protamin | MEDA Pharmaceutical | V03AB14 | |
Custodiol cardioplegia solution | Dr. F. Köhler Chemie GmbH | B05CX10 | |
Instruments: | |||
Window access retractor SI | Estech | 400-400 | |
SI retractor blade 40W50L | Estech | 400-172 | |
Ceramo atraumatic forceps 2.8x15/350 | Fehling | FE-MRA-3 | |
Ceramo HCR valve forceps 3.0x15/350 | Fehling | FE-MRA-0 | |
Ceramo HCR needle holder 2x10/340 | Fehling | FE-MRB-2 | |
Ceramo TC HCR needle holder curved 3x10/340 | Fehling | FE-MRG-9 | |
Ceramo HCR valve scissors 350 | Fehling | FE-MRA-7 | |
Ceramo HCR curved scissors 350 | Fehling | FE-MRA-6 | |
Cygnet flexible arched aortic clamp | Vitalitec | V10143 | |
Intrack insert set double traction | Vitalitec | N10122 | |
Dissection forceps Carpentier | Delacroix-Chevalier | DC13110-28 | |
Scissors Metzenbaum | Delacroix-Chevalier | B351751 | |
Needle holder Ryder | Delacroix-Chevalier | DC51130-20 | |
Dissection forceps DeBakey | Delacroix-Chevalier | DC12000-21 | |
Lung retractor | Delacroix-Chevalier | B803990 | |
Allis clamp | Delacroix-Chevalier | DC45907-25 | |
O’Shaugnessy Dissector | Delacroix-Chevalier | B60650 | |
18 blade knife | Delacroix-Chevalier | B130180 | |
11 blade knife | Premiere | 9311-2PK | |
Leriche haemostatic clamp | Delacroix-Chevalier | B86555 | |
Data analysis | |||
Mann-Whitney and Chi-square tests | GraphPad | Prism 7 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved