A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
This protocol describes a detailed procedure for the construction of a phage-displayed synthetic antibody library with tailored diversity. Synthetic antibodies have broad applications from basic research to disease diagnostics and therapeutics.
Demand for monoclonal antibodies (mAbs) in basic research and medicine is increasing yearly. Hybridoma technology has been the dominant method for mAb development since its first report in 1975. As an alternative technology, phage display methods for mAb development are increasingly attractive since Humira, the first phage-derived antibody and one of the best-selling mAbs, was approved for clinical treatment of rheumatoid arthritis in 2002. As a non-animal based mAb development technology, phage display bypasses antigen immunogenicity, humanization, and animal maintenance that are required from traditional hybridoma technology based antibody development. In this protocol, we describe a method for construction of synthetic phage-displayed Fab libraries with diversities of 109-1010 obtainable with a single electroporation. This protocol consists of: 1) high-efficiency electro-competent cell preparation; 2) extraction of uracil-containing single-stranded DNA (dU-ssDNA); 3) Kunkel's method based oligonucleotide-directed mutagenesis; 4) electroporation and calculation of library size; 5) protein A/L-based enzyme-linked immunosorbent assay (ELISA) for folding and functional diversity evaluation; and 6) DNA sequence analysis of diversity.
mAbs have broad applications ranging from basic research to disease diagnostics and therapeutics. As of 2016, more than 60 mAbs have been approved by the United States Food and Drug Administration (USFDA) for clinical treatment of autoimmune diseases, cancer, and infectious diseases1,2.
In 1975, Kohler and Milstein reported a technique for the continuous generation of antibodies of a single clonal specificity from a cellular source referred to as 'hybridomas' and this technique has subsequently become a cornerstone in medicine and industry3,4. Generation of mAbs by this method requires various steps including antigen production, mouse immunization, extraction of B lymphocytes, fusion of B cells with myeloma cells to form immortal hybridoma cells, clone selection, and for therapeutic applications, humanization is required to avoid human anti-mouse antibody (HAMA)4,5. However, for this technology, antigens including toxins, pathogens, and highly conserved proteins are relatively ineffective in triggering an in vivo immune response for mAb production5.
In 1978, Hutchison et al. reported the use of an oligonucleotide to direct mutagenesis of a residue in a single-stranded bacteriophage virus6. In 1985, Smith reported that foreign gene fragments can be fused in frame with the gene encoding phage coat protein III and can thus be displayed on the phage surface without compromising its infectivity7. These pioneering works laid a foundation for the subsequent construction of phage-displayed antibody libraries in immune, naïve, and synthetic forms with the formats of single-chain variable fragment (scFv) and antigen-binding fragment (Fab) for therapeutic mAb development8,9. From the technical point of view, phage display-based antibody development offers a complementary approach to hybridoma-based mAb development that can help to circumvent the limitations some antigens can pose and the humanization process that hybridoma-derived antibodies often require5. As of 2016, 6 phage display-derived mAbs have been approved in the market including Humira, one of the most successful mAbs used for treatment of rheumatoid arthritis, and many phage display-derived antibody candidates are currently at various stages of clinical investigation10.
For immune and naïve phage antibody libraries, the diversity of complementarity-determining regions (CDRs) in light and heavy chain is derived from the natural immune repertoire (i.e., from B cells). In contrast, the diversity of CDRs in synthetic phage antibody libraries is entirely artificial. Synthetic approaches to library construction provide precise control over the design of sequence diversity and offer opportunities for mechanistic studies of antibody structure and function11,12. Moreover, the framework for synthetic libraries can be optimized before library construction to facilitate downstream, large-scale industrial development11,12.
In 1985, Kunkel reported a single-stranded DNA (ssDNA) template-based mutagenesis approach to introduce site-directed mutations into M13 bacteriophage efficiently13. This approach was subsequently used widely for construction of phage-displayed libraries. Chemically synthesized DNA oligonucleotides designed to introduce diversity into Fab CDRs are incorporated into a phagemid with an antibody backbone template. In this process, the phagemid is expressed as a uracil-containing ssDNA (dU-ssDNA) and the oligonucleotides are annealed onto the CDRs and extended to synthesize double-stranded DNA (dsDNA) in the presence of T7 DNA polymerase and T4 DNA ligase. Finally, generated ds-DNA can be introduced into Escherichia coli by electroporation.
For high diversity, phage-displayed library construction, high-voltage electroporation of a two-component mixture of electro-competent cells and covalently closed circular dsDNA (CCC-dsDNA) should be prepared carefully. Sidhu et al. modified the preparation of electro-competent cells and DNA from traditional methods and greatly improved library diversity14.
In this protocol, we describe a method for construction of synthetic phage-displayed Fab libraries with diversities of 109-1010 obtainable with a single electroporation. Figure 1 shows an overview of library construction including: 1) high-efficiency electro-competent cell preparation; 2) extraction of dU-ssDNA; 3) Kunkel's method based oligonucleotide-directed mutagenesis; 4) electroporation and calculation of library size; 5) protein A/L-based ELISA for folding and functional diversity evaluation; and 6) DNA sequence analysis of diversity. All the reagents, strains and equipment are listed in the Material's Table. Table 1 shows the reagent setup.
Access restricted. Please log in or start a trial to view this content.
NOTE: Filter sterile tips must be used throughout when dealing with phage to avoid contamination to pipette gun and surrounding area. Aseptic area or hood must be used when handling with bacteria and phage experiments. Phage experiment area must be cleaned up using 2% sodium dodecyl sulfate (SDS) followed by 70% ethanol to avoid phage contamination. For making serial dilutions in this protocol, new tips should be used for each dilution.
1. E. Coli SS320 Electro-competent Cell Preparation
2. Preparing Uracil-containing ssDNA (dU-ssDNA) from the Phagemid Template
NOTE: A previously reported Fab backbone phagemid was used as the template for dU-ssDNA preparation15. The architecture of the Fab backbone phagemid is shown in Figure 2. A plasmid spin kit (QIAprep Spin M13) is used for extraction of dU-ssDNA with slight modifications.
3. Kunkel's Method Based Oligonucleotide-directed Mutagenesis
Notes: It is advisable to conduct small-scale reactions prior to full scale reactions to ensure the quality of the mutagenic oligonucleotide and reaction components. A cartoon of Kunkel's method based oligonucleotide-directed mutagenesis is shown in Figure 3. Various amino acid diversities are introduced into CDRH1, CDRH2, CDRH3, and CDRL3 regions with IMGT numbering nomenclature16 (Table 2). The theoretical amino acid diversity of each CDR, total theoretical amino acid diversity, and oligonucleotide sequences are listed in Table 2.
4. Electroporation and Calculation of the Library Size
5. Quality Assessment by Protein A/L Direct Binding ELISA Assay and Sequencing
Access restricted. Please log in or start a trial to view this content.
Following the flow chart of the Fab library construction (see Figure 1), we prepared M13KO7 helper phage pre-infected E. coli SS320 electro-competent cells. The efficiency of these electro-competent cells is estimated as 2 X 109 cfu/µg when the Fab phagemid backbone for library construction was used (Figure 4).
The uracil incorporation efficienc...
Access restricted. Please log in or start a trial to view this content.
To construct high diversity, phage-displayed Fab libraries, quality control check points are needed to monitor various stages of the construction process, including the competency of electro-competent cells, quality of the dU-ssDNA template, efficiency of CCC-dsDNA synthesis, titer after electroporation, Fab folding, and amino acid diversity of CDRs by sequence analysis of Fab-phage clones.
High yield and purity of dU-ssDNA is essential for high mutagenesis rate. In our experience, phage induc...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
The authors appreciate Dr. Frederic Fellouse from the Sidhu lab for critical comments on Kunkel's method based synthetic Fab phage library construction. The authors appreciate Mrs. Alevtina Pavlenco and other members from the Sidhu lab for valuable help of preparing high-efficiency electro-competent E. coli cells and high quality dU-ssDNA. This work was supported by National Natural Science Foundation of China (Grant No.: 81572698, 31771006) to DW and by ShanghaiTech University (Grant No.: F-0301-13-005) to Laboratory of Antibody Engineering.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Reagents | |||
1.0 M H3PO4 | Fisher | AC29570 | |
1.0 M Tris, pH 8.0 | Invitrogen | 15568-025 | |
10 mM ATP | Invitrogen | 18330-019 | |
100 mM dithiothreitol | Fisher | BP172 | |
100 mM dNTP mix | GE Healthcare | 28-4065-60 | solution containing 25 mM each of dATP, dCTP, dGTP and dTTP. |
3,3’,5,5’-tetramethylbenzidine (TMB) | Kirkegaard & Perry Laboratories Inc | 50-76-02 | |
50X TAE | Invitrogen | 24710030 | |
Agarose | Fisher | BP160 | |
Carbenicillin, carb | Sigma | C1389 | 100 mg/mL in water, 0.22 μm filter-sterilize, work concentration: 100 μg/mL. |
Chloramphenicol, cmp | Sigma | C0378 | 100 mg/mL in ethanol, 0.22 μm filter-sterilize, work concentration: 10 μg/mL. |
EDTA 0.5 M, pH 8.0 | Invitrogen | AM9620G | |
Granulated agar | VWR | J637-500G | |
H2O2 peroxidase substrate | Kirkegaard & Perry Laboratories Inc | 50-65-02 | |
K2HPO4 | Sigma | 795488 | |
Kanamycin, kan | Fisher | AC61129 | 50 mg/mL in water, 0.22 μm filter-sterilize, work concentration: 50 μg/mL. |
KH2PO4 | Sigma | P2222 | |
Na2HPO4 | Sigma | 94046 | |
NaCl | Alfa Aesar | U19C015 | |
Nanodrop | Fisher | ND2000C | |
NaOH | Fisher | SS256 | ! CAUTION NaOH causes burns. |
NON-Fat Powdered Milk | Sangon Biotech | A600669 | |
PEG-8000 | Fisher | BP233 | |
Protein A-HRP conjugate | Invitrogen | 101123 | |
QIAprep Spin M13 Kit | Qiagen | 22704 | |
QIAquick Gel Extraction Kit | Qiagen | 28706 | |
QIAquick PCR Purification Kit | Qiagen | 28104 | |
Recombinant Protein L | Fisher | 77679 | |
T4 DNA polymerase | New England Biolabs | M0203S | |
T4 polynucleotide kinase | New England Biolabs | M0201S | |
T7 DNA polymerase | New England Biolabs | M0274S | |
Tetracycline, tet | Sigma | T7660 | 50 mg/mL in water, 0. 22 μm filter-sterilize, work concentration: 10 μg/mL. |
Tryptone | Fisher | 0123-07-5 | |
Tween-20 | Sigma | P2287 | |
Ultrapure glycerol | Invitrogen | 15514-011 | |
Uridine | Sigma | U3750 | 25 mg/mL in ethanol, work concentration: 0.25 μg/mL. |
Yeast extract | VWR | DF0127-08 | |
Name | Company | Catalog Number | Comments |
Strains | |||
E.coli CJ236 | New England Biolabs | E4141 | Genotype: dut- ung- thi-1 relA1 spoT1 mcrA/pCJ105(F' camr). Used for preparation of dU-ssDNA. |
E.coli SS320 | Lucigen | 60512 | Genotype: [F'proAB+lacIq lacZΔM15 Tn10 (tetr)] hsdR mcrB araD139 Δ(araABC-leu)7679 ΔlacX74 galUgalK rpsL thi. Optimized for high-efficiency electroporation and filamentous bacteriophage production. |
M13KO7 | New England Biolabs | N0315S | |
Name | Company | Catalog Number | Comments |
Equipment | |||
0.2-cm gap electroporation cuvette | BTX | ||
96-well 2mL Deep-well plates | Fisher | 278743 | |
96-well Maxisorp immunoplates | Nunc | 151759 | |
Baffled flasks | Corning | ||
Benchtop centrifuge | Eppendorf | 5811000096 | |
Centrifuge bottles | Nalgene | ||
ECM-630 electroporator | BTX | ||
Magnetic stir bars | Nalgene | ||
Thermo Fisher centrifuge | Fisher | ||
High speed shaker | TAITEK | MBR-034P | |
Microplate shaker | QILINBEIER | QB-9002 | |
Liquid handler for 96 and 384 wells | RAININ | ||
Mutil-channel pipette | RAININ | E4XLS | |
Amicon concentrator | Merck | UFC803096 |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved