JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

Characterization of MLKL-mediated Plasma Membrane Rupture in Necroptosis

Published: August 7th, 2018

DOI:

10.3791/58088

1Department of Structural Biology, St. Jude Children's Research Hospital, 2Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 3Department of Immunology, St. Jude Children's Research Hospital
* These authors contributed equally

We report methods for characterization of MLKL-mediated plasma membrane rupture in necroptosis including conventional and confocal live-cell microscopy imaging, scanning electron microscopy, and NMR-based lipid binding.

Necroptosis is a programmed cell death pathway triggered by activation of receptor interacting protein kinase 3 (RIPK3), which phosphorylates and activates the mixed lineage kinase-like domain pseudokinase, MLKL, to rupture or permeabilize the plasma membrane. Necroptosis is an inflammatory pathway associated with multiple pathologies including autoimmunity, infectious and cardiovascular diseases, stroke, neurodegeneration, and cancer. Here, we describe protocols that can be used to characterize MLKL as the executioner of plasma membrane rupture in necroptosis. We visualize the process of necroptosis in cells using live-cell imaging with conventional and confocal fluorescence microscopy, and in fixed cells using electron microscopy, which together revealed the redistribution of MLKL from the cytosol to the plasma membrane prior to induction of large holes in the plasma membrane. We present in vitro nuclear magnetic resonance (NMR) analysis using lipids to identify putative modulators of MLKL-mediated necroptosis. Based on this method, we identified quantitative lipid-binding preferences and phosphatidyl-inositol phosphates (PIPs) as critical binders of MLKL that are required for plasma membrane targeting and permeabilization in necroptosis.

Identifying genetic components of necroptosis has facilitated the use of animal models to test the implication of necroptosis in physiology and disease1,2,3,4,5. Knockout of RIPK3 or MLKL in mice had minimal implication in development and adult homeostasis suggesting that necroptosis is not essential for life3....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Cloning and Cell Line Generation

  1. PCR amplify the NBB region, corresponding to amino acid residues 1-140 (NBB140), from human MLKL cDNA for in frame standard restriction enzyme-based cloning with the oligomerization domain 2x FK506 binding protein (2xFKBP or 2xFV) and Venus fluorescent protein into the Doxycycline (Dox)-inducible retroviral vector pRetroX-TRE3G to obtain NBB140-2xFV-Venus (Table 1, Figures 1A-B).
  2. Immortalize primary mlkl-/-

    Log in or to access full content. Learn more about your institution’s access to JoVE content here

Visualizing regulated necroptosis execution in live cells has been possible through inducible expression of a minimal truncated MLKL construct, NBB140-2xFV-Venus. This construct maintains the ability to induce plasma membrane permeabilization and is activated through Dim-induced oligomerization of the FKBP cassette (2xFV). We observe and quantify necroptosis by live-cell microscopy imaging, monitoring kinetically (every 5 min) the uptake of a cell impermeable green fluorescence.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We provide protocols for techniques that we combined to implicated MLKL as the putative executioner of plasma membrane rupture24. In addition to deciphering the regulatory network that regulates MLKL-mediated necroptosis, these techniques can be used independently to characterize other suitable biological systems. Practically speaking, these techniques are medium- to low-throughput discovery tools.

We have routinely used live-cell imaging of NBB140-2xFV-Venus.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

None.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Cloning and cell line generation
pRetroX-TRE3G Clontech 631188
Tet-On transactivator plasmid Llambi et al., 2016
Mouse Embryonic Fibroblasts (MEFs) mlkl-/- Dillon et al., 2014
Blasticidin S Hydrochloride Thermo Fisher Scientific BP2647100 CAS#3513-03-9
Cell death quantification and live-cell microscopy
Doxycycline Clontech 631311 CAS# 24390-14-5
B/B Homodimerizer AP20187 Takara 635059 CAS# 195514-80-8
SYTOX Green Thermo Fisher Scientific S7020
Syto16 Thermo Fisher Scientific S7578
NMR
15N Ammonium Chloride Cambridge Isotope Laboratories NLM-467-10 CAS# 12125-02-9
Deuterated DTT Cambridge Isotope Laboratories DLM-2622-1
Deuterium Oxide Sigma Aldrich 617385-1 CAS# 7789-20-0
n-Dodecyl-β-D-Maltopyranoside Anatrace D310 CAS# 69227-93-6
L-α-phosphatidylinositol-4,5-bisphosphate (Brain, Porcine) (ammonium salt) Avanti Polar Lipids 840046X CAS# 383907-42-4
1,2-distearoyl-sn-glycero-3-phosphoinositol (ammonium salt) (18:0 PI) Avanti Polar Lipids 850143 CAS# 849412-67-5
1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol) (ammonium salt) (18:1) Avanti Polar Lipids 850149 CAS# 799268-53-4
Specialized Equipment
IncuCyte FLR or ZOOM Essen BioScience, Inc. Live-cell microscopy imaging
Helios NanoLab 660 DualBeam  Thermo Fisher Scientific Electron microscope
Software
IncuCyte 2011A Rev2 v20111.3.4288 (FLR) Essen BioScience, Inc. http://www.essenbioscience.com Imaging analysis
FEI MAPS Thermo Fisher Scientific https://www.fei.com/software/maps/ EM analysis
TopSpin v3.2 Bruker BioSpin http://www.bruker.com NMR data collection
CARA v1.9.1.7 http://cara.nmr.ch/  NMR data analysis
Slidebook 3i (Intelligent Imaging Innovations) https://www.intelligent-imaging.com/slidebook Confocal microscopy

  1. Weinlich, R., Oberst, A., Beere, H. M., Green, D. R. Necroptosis in development, inflammation and disease. Nature Reviews Molecular Cell Biology. 18 (2), 127-136 (2017).
  2. Kaiser, W. J., et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature. 471 (7338), 368-372 (2011).
  3. Murphy, J. M., et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity. 39 (3), 443-453 (2013).
  4. Oberst, A., et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature. 471 (7338), 363-367 (2011).
  5. Zhang, H., et al. Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature. 471 (7338), 373-376 (2011).
  6. He, S., et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 137 (6), 1100-1111 (2009).
  7. Dondelinger, Y., Hulpiau, P., Saeys, Y., Bertrand, M. J. M., Vandenabeele, P. An evolutionary perspective on the necroptotic pathway. Trends in Cell Biology. 26 (10), 721-732 (2016).
  8. Newton, K., Manning, G. Necroptosis and Inflammation. Annual Review of Biochemistry. 85, 743-763 (2016).
  9. Kaiser, W. J., Upton, J. W., Mocarski, E. S. Viral modulation of programmed necrosis. Current Opinion in Virology. 3 (3), 296-306 (2013).
  10. Newton, K., et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death & Differentiation. 23 (9), 1565-1576 (2016).
  11. Kearney, C. J., Martin, S. J. An Inflammatory Perspective on Necroptosis. Molecular Cell. 65 (6), 965-973 (2017).
  12. Pasparakis, M., Vandenabeele, P. Necroptosis and its role in inflammation. Nature. 517 (7534), 311-320 (2015).
  13. Sun, L., Wang, X. A new kind of cell suicide: mechanisms and functions of programmed necrosis. Trends in Biochemical Sciences. 39 (12), 587-593 (2014).
  14. Grootjans, S., Vanden Berghe, T., Vandenabeele, P. Initiation and execution mechanisms of necroptosis: an overview. Cell Death & Differentiation. 24 (7), 1184-1195 (2017).
  15. Sun, L., et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 148 (1-2), 213-227 (2012).
  16. Wang, H., et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Molecular Cell. 54 (1), 133-146 (2014).
  17. Cai, Z., et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nature Cell Biology. 16 (1), 55-65 (2014).
  18. Chen, X., et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Research. 24 (1), 105-121 (2014).
  19. Dillon, C. P., et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell. 157 (5), 1189-1202 (2014).
  20. Rickard, J. A., et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell. 157 (5), 1175-1188 (2014).
  21. Kaiser, W. J., et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. Journal of Biological Chemistry. 288 (43), 31268-31279 (2013).
  22. Upton, J. W., Kaiser, W. J. DAI Another Way: Necroptotic Control of Viral Infection. Cell Host & Microbe. 21 (3), 290-293 (2017).
  23. Tanzer, M. C., et al. Necroptosis signalling is tuned by phosphorylation of MLKL residues outside the pseudokinase domain activation loop. Biochemical Journal. 471 (2), 255-265 (2015).
  24. Quarato, G., et al. Sequential Engagement of Distinct MLKL Phosphatidylinositol-Binding Sites Executes Necroptosis. Molecular Cell. 61 (4), 589-601 (2016).
  25. Davies, K. A., et al. The brace helices of MLKL mediate interdomain communication and oligomerisation to regulate cell death by necroptosis. Cell Death & Differentiation. , (2018).
  26. Su, L., et al. A plug release mechanism for membrane permeation by MLKL. Structure. 22 (10), 1489-1500 (2014).
  27. Dondelinger, Y., et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Reports. 7 (4), 971-981 (2014).
  28. Llambi, F., et al. BOK Is a Non-canonical BCL-2 Family Effector of Apoptosis Regulated by ER-Associated Degradation. Cell. 165 (2), 421-433 (2016).
  29. Malkani, N., Schmid, J. A. Some secrets of fluorescent proteins: distinct bleaching in various mounting fluids and photoactivation of cyan fluorescent proteins at YFP-excitation. PLoS One. 6 (4), 18586 (2011).
  30. Perez, A. J., et al. A workflow for the automatic segmentation of organelles in electron microscopy image stacks. Frontiers in Neuroanatomy. 8, 126 (2014).
  31. Walton, J. Lead aspartate, an en bloc contrast stain particularly useful for ultrastructural enzymology. Journal of Histochemistry & Cytochemistry. 27 (10), 1337-1342 (1979).
  32. Denk, W., Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biology. 2 (11), 329 (2004).
  33. Rossi, P., Xia, Y., Khanra, N., Veglia, G., Kalodimos, C. G. 15N and 13C- SOFAST-HMQC editing enhances 3D-NOESY sensitivity in highly deuterated, selectively [1H,13C]-labeled proteins. Journal of Biomolecular NMR. 66 (4), 259-271 (2016).
  34. Keller, R. The computer aided resonance assignment tutorial. Cantina Verlag. , (2004).
  35. Chen, W., et al. Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling. Journal of Biological Chemistry. 288 (23), 16247-16261 (2013).
  36. Tanzer, M. C., et al. Evolutionary divergence of the necroptosis effector MLKL. Cell Death & Differentiation. 23 (7), 1185-1197 (2016).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved