A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We report methods for characterization of MLKL-mediated plasma membrane rupture in necroptosis including conventional and confocal live-cell microscopy imaging, scanning electron microscopy, and NMR-based lipid binding.
Necroptosis is a programmed cell death pathway triggered by activation of receptor interacting protein kinase 3 (RIPK3), which phosphorylates and activates the mixed lineage kinase-like domain pseudokinase, MLKL, to rupture or permeabilize the plasma membrane. Necroptosis is an inflammatory pathway associated with multiple pathologies including autoimmunity, infectious and cardiovascular diseases, stroke, neurodegeneration, and cancer. Here, we describe protocols that can be used to characterize MLKL as the executioner of plasma membrane rupture in necroptosis. We visualize the process of necroptosis in cells using live-cell imaging with conventional and confocal fluorescence microscopy, and in fixed cells using electron microscopy, which together revealed the redistribution of MLKL from the cytosol to the plasma membrane prior to induction of large holes in the plasma membrane. We present in vitro nuclear magnetic resonance (NMR) analysis using lipids to identify putative modulators of MLKL-mediated necroptosis. Based on this method, we identified quantitative lipid-binding preferences and phosphatidyl-inositol phosphates (PIPs) as critical binders of MLKL that are required for plasma membrane targeting and permeabilization in necroptosis.
Identifying genetic components of necroptosis has facilitated the use of animal models to test the implication of necroptosis in physiology and disease1,2,3,4,5. Knockout of RIPK3 or MLKL in mice had minimal implication in development and adult homeostasis suggesting that necroptosis is not essential for life3,6. Moreover, certain species do not contain either RIPK3 or MLKL genes, supporting the non-essential role of necroptosis in animals7,8. On the other hand, challenging knockout animal models with various pathologies induced in the laboratory has revealed an important role of necroptosis in inflammation, innate immunity, and viral infection9,10,11,12.
Necroptosis can be activated in several ways by signaling through different innate immunity sensors, all of which result in the activation of RIPK31,13,14. Active RIPK3 in turn phosphorylates and activates MLKL3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18. The most studied, and perhaps the most complex way, leading to activation of RIPK3 involves death receptor ligation, which bifurcates based on the downstream composition of the signaling complexes to either induce apoptosis or necroptosis1. Necroptosis ensues when signaling through RIPK1 is favored and results in engagement of RIPK319,20. This outcome is easily favored upon pharmacological inhibition or genetic deletion of caspase 8, a putative endogenous inhibitor of necroptosis that keeps necroptosis at bay. RIPK1 binds to and activates RIPK3. Another way to activate necroptosis is through Toll-like receptors TLR3/TLR4 signaling, which engages and activates RIPK3 through TIR-domain-containing adapter-inducing interferon-β (TRIF)21. Yet another way to die by necroptosis is by activation of the DNA sensor DAI, which directly engages and activates RIPK322.
MLKL is a cytosolic protein comprised of an N-terminal helix bundle (NB) domain and a C-terminal pseudokinase domain (psKD) linked by a regulatory brace region3. In normal cells, MLKL is found in the cytosol where it is thought to be in an inactive complex with RIPK314. Activation of necroptosis triggers RIPK3 phosphorylation of MLKL in the activation loop of the psKD, and potentially additional sites in the NB and brace3,15,23. Phosphorylation induces a conformational change in MLKL that results in dissociation from RIPK314. Poorly understood conformational changes release the brace from the psKD24. The brace, which contains 2 helices, mediates oligomerization of MLKL into a putative trimer through the C-terminal helix25. The N-terminal helix of the brace inhibits the NB domain, which is essential for membrane permeabilization24,26. In isolation, NB domain is sufficient to induce plasma membrane permeabilization and necroptosis16,24,27. The pro-necroptotic activity of NB was reconstituted in mouse embryonic fibroblasts deficient in MLKL (mlkl-/- MEFs). NB is a lipid binding domain that preferentially engages the phospholipid phosphatidylinositol 4,5 diphosphate (PIP2). We proposed a stepwise mechanism of activation of MLKL, wherein brace oligomerization facilitates recruitment of MLKL to the plasma membrane via weak interactions of NB with the PIP2 polar head group24. At the membrane, the NB undergoes regulated exposure of an additional high-affinity binding site for PIP2, which is masked by the brace in inactive MLKL. Overall, the multiple interactions of NB with PIP2 destabilize the plasma membrane leading to its rupture, although the molecular mechanism of these events have not been elucidated.
Here we illustrate specific methods used to characterize the function of MLKL as executioner of necroptosis24. In particular, we focus on the most minimal domain of MLKL, the NB and brace (NBB), which is regulated by brace inhibition and can be activated through enforced dimerization to induce plasma membrane rupture and necroptosis. We describe our inducible expression system combined with enforced drug-induced FKBP-mediated dimerization for live-cell imaging, and electron microscopy of cells undergoing necroptosis. Additionally, we illustrate our in vitro NMR analysis of the interactions of NBB with phosphatidylinositols (PIPs).
1. Cloning and Cell Line Generation
2. Live-Cell Microscopy Imaging of MLKL-mediated Necroptosis
3. Live-cell Confocal Microscopy Imaging of Plasma Membrane Recruitment and Permeabilization by MLKL
4. Electron Microscopy
5. Lipid Binding of MLKL by Nuclear Magnetic Resonance (NMR) Spectroscopy
Visualizing regulated necroptosis execution in live cells has been possible through inducible expression of a minimal truncated MLKL construct, NBB140-2xFV-Venus. This construct maintains the ability to induce plasma membrane permeabilization and is activated through Dim-induced oligomerization of the FKBP cassette (2xFV). We observe and quantify necroptosis by live-cell microscopy imaging, monitoring kinetically (every 5 min) the uptake of a cell impermeable green fluorescence...
We provide protocols for techniques that we combined to implicated MLKL as the putative executioner of plasma membrane rupture24. In addition to deciphering the regulatory network that regulates MLKL-mediated necroptosis, these techniques can be used independently to characterize other suitable biological systems. Practically speaking, these techniques are medium- to low-throughput discovery tools.
We have routinely used live-cell imaging of NBB140-2xFV-Venus...
None.
None.
Name | Company | Catalog Number | Comments |
Cloning and cell line generation | |||
pRetroX-TRE3G | Clontech | 631188 | |
Tet-On transactivator plasmid | Llambi et al., 2016 | ||
Mouse Embryonic Fibroblasts (MEFs) mlkl-/- | Dillon et al., 2014 | ||
Blasticidin S Hydrochloride | Thermo Fisher Scientific | BP2647100 CAS#3513-03-9 | |
Cell death quantification and live-cell microscopy | |||
Doxycycline | Clontech | 631311 CAS# 24390-14-5 | |
B/B Homodimerizer AP20187 | Takara | 635059 CAS# 195514-80-8 | |
SYTOX Green | Thermo Fisher Scientific | S7020 | |
Syto16 | Thermo Fisher Scientific | S7578 | |
NMR | |||
15N Ammonium Chloride | Cambridge Isotope Laboratories | NLM-467-10 CAS# 12125-02-9 | |
Deuterated DTT | Cambridge Isotope Laboratories | DLM-2622-1 | |
Deuterium Oxide | Sigma Aldrich | 617385-1 CAS# 7789-20-0 | |
n-Dodecyl-β-D-Maltopyranoside | Anatrace | D310 CAS# 69227-93-6 | |
L-α-phosphatidylinositol-4,5-bisphosphate (Brain, Porcine) (ammonium salt) | Avanti Polar Lipids | 840046X CAS# 383907-42-4 | |
1,2-distearoyl-sn-glycero-3-phosphoinositol (ammonium salt) (18:0 PI) | Avanti Polar Lipids | 850143 CAS# 849412-67-5 | |
1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol) (ammonium salt) (18:1) | Avanti Polar Lipids | 850149 CAS# 799268-53-4 | |
Specialized Equipment | |||
IncuCyte FLR or ZOOM | Essen BioScience, Inc. | Live-cell microscopy imaging | |
Helios NanoLab 660 DualBeam | Thermo Fisher Scientific | Electron microscope | |
Software | |||
IncuCyte 2011A Rev2 v20111.3.4288 (FLR) | Essen BioScience, Inc. | http://www.essenbioscience.com | Imaging analysis |
FEI MAPS | Thermo Fisher Scientific | https://www.fei.com/software/maps/ | EM analysis |
TopSpin v3.2 | Bruker BioSpin | http://www.bruker.com | NMR data collection |
CARA v1.9.1.7 | http://cara.nmr.ch/ | NMR data analysis | |
Slidebook | 3i (Intelligent Imaging Innovations) | https://www.intelligent-imaging.com/slidebook | Confocal microscopy |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved