JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biochemistry

Plate-based Large-scale Cultivation of Caenorhabditis elegans: Sample Preparation for the Study of Metabolic Alterations in Diabetes

Published: August 24th, 2018

DOI:

10.3791/58117

15th Medical Department, Medical Faculty Mannheim, Heidelberg University, 2Department of Internal Medicine, Heidelberg University, 3German Center for Diabetes Research (DZD), 4European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University
* These authors contributed equally

Culturing Caenorhabditis elegans (C. elegans) in a large-scale manner on agar plates can be time-consuming and difficult. This protocol describes a simple and inexpensive method to obtain a large number of animals for the isolation of proteins to proceed with a western blot, mass spectrometry, or further proteomics analyses. Furthermore, an increase of nematode numbers for immunostainings and the integration of multiple analyses under the same culturing conditions can easily be achieved. Additionally, a transfer between plates with different experimental conditions is facilitated. Common techniques in plate culture involve the transfer of a single C. elegans using a platinum wire and the transfer of populated agar chunks using a scalpel. However, with increasing nematode numbers, these techniques become overly time-consuming. This protocol describes the large-scale culture of C. elegans including numerous steps to minimize the impact of the sample preparation on the physiology of the worm. Fluid and shear stress can alter the lifespan of and metabolic processes in C. elegans, thus requiring a detailed description of the critical steps in order to retrieve reliable and reproducible results. C. elegans is a model organism, consisting of neuronal cells for up to one-third, but lacking blood vessels, thus providing the possibility to investigate solely neuronal alterations independent of vascular control. Recently, early neurodegeneration in diabetic retinopathy was found prior to vascular alterations. Thus, C. elegans is of special interest for studying general mechanisms of diabetic complications. For example, an increased formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS) is observed, which are reproducibly found in C. elegans. Protocols to handle samples of adequate size for a broader spectrum of investigations are presented here, exemplified by the study of diabetes-induced biochemical alterations. In general, this protocol can be useful for studies requiring large C. elegans numbers and in which liquid culture is not suitable.

Tags

Keywords Caenorhabditis Elegans

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved