JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Cancer Research

Identification, Histological Characterization, and Dissection of Mouse Prostate Lobes for In Vitro 3D Spheroid Culture Models

Published: September 18th, 2018

DOI:

10.3791/58397

1Department of Urology, SUNY Upstate Medical University, 2Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 3Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, 4Boulder BioPATH, Inc

Genetically engineered mice are useful models for investigating prostate cancer mechanisms. Here we present a protocol to identify and dissect prostate lobes from a mouse urogenital system, differentiate them based on histology, and isolate and culture the primary prostate cells in vitro as spheroids for downstream analyses.

Genetically engineered mouse models (GEMMs) serve as effective pre-clinical models for investigating most types of human cancers, including prostate cancer (PCa). Understanding the anatomy and histology of the mouse prostate is important for the efficient use and proper characterization of such animal models. The mouse prostate has four distinct pairs of lobes, each with their own characteristics. This article demonstrates the proper method of dissection and identification of mouse prostate lobes for disease analysis. Post-dissection, the prostate cells can be further cultured in vitro for mechanistic understanding. Since mouse prostate primary cells tend to lose their normal characteristics when cultured in vitro, we outline here a method for isolating the cells and growing them as 3D spheroid cultures, which is effective for preserving the physiological characteristics of the cells. These 3D cultures can be used for analyzing cell morphology and behavior in near-physiological conditions, investigating altered levels and localizations of key proteins and pathways involved in the development and progression of a disease, and looking at responses to drug treatments.

The scientific community has been attempting to elucidate the complex mechanism of human cancer development for decades. Whereas identification of potential key players and drug targets begins with patient cells and tissue studies, the translational application of such findings often requires the use of pre-clinical animal models. The use of genetically engineered mice models (GEMMs) to model human cancers has steadily risen since the establishment of the Mouse Models of Human Cancers Consortium (NCI-MMHCC), a committee which sought to describe and unify characteristics of mouse cancer models for scientists worldwide1,Cancer Research. 65 (9 Supplement), 242-243 (2005).

  • Marks, C. Mouse Models of Human Cancers Consortium (MMHCC) from the NCI. Disease Models & Mechanisms. 2 (3-4), 111 (2009).
  • Day, C. P., Merlino, G., Van Dyke, T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell. 163 (1), 39-53 (2015).
  • Society, A. C. . Cancer Facts and Figures. , (2018).
  • Shappell, S. B., et al. Prostate Pathology of Genetically Engineered Mice: Definitions and Classification. The Consensus Report from the Bar Harbor Meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Research. 64 (6), 2270-2305 (2004).
  • Berquin, I. M., Min, Y., Wu, R., Wu, H., Chen, Y. Q. Expression signature of the mouse prostate. Journal of Biological Chemistry. 280 (43), 36442-36451 (2005).
  • Wu, X., et al. Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mechanisms of Development. 101 (1-2), 61-69 (2001).
  • Xin, L., Lukacs, R. U., Lawson, D. A., Cheng, D., Witte, O. N. Self-renewal and multilineage differentiation in vitro from murine prostate stem cells. Stem Cells. 25 (11), 2760-2769 (2007).
  • Hofner, T., et al. Defined conditions for the isolation and expansion of basal prostate progenitor cells of mouse and human origin. Stem Cell Reports. 4 (3), 503-518 (2015).
  • Lukacs, R. U., Goldstein, A. S., Lawson, D. A., Cheng, D., Witte, O. N. Isolation, cultivation and characterization of adult murine prostate stem cells. Nature Protocols. 5 (4), 702-713 (2010).
  • Clarke, M. F., Fuller, M. Stem cells and cancer: two faces of eve. Cell. 124 (6), 1111-1115 (2006).
  • Oliveira, D. S., et al. The mouse prostate: a basic anatomical and histological guideline. Bosnian Journal of Basic Medical Sciences. 16 (1), 8-13 (2016).
  • Colicino, E. G., et al. Gravin regulates centrosome function through PLK1. Molecular Biology of the Cell. 29 (5), 532-541 (2018).
  • Ittmann, M., et al. Animal models of human prostate cancer: the consensus report of the New York meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee. Cancer Research. 73 (9), 2718-2736 (2013).
  • Valkenburg, K. C., Williams, B. O. Mouse models of prostate cancer. Prostate Cancer. 2011, 895238 (2011).
  • Xiong, X., et al. Disruption of Abi1/Hssh3bp1 expression induces prostatic intraepithelial neoplasia in the conditional Abi1/Hssh3bp1 KO mice. Oncogenesis. 1, e26 (2012).
  • Liao, C. P., Adisetiyo, H., Liang, M., Roy-Burman, P. Cancer-associated fibroblasts enhance the gland-forming capability of prostate cancer stem cells. Cancer Research. 70 (18), 7294-7303 (2010).
  • This article has been published

    Video Coming Soon

    JoVE Logo

    Privacy

    Terms of Use

    Policies

    Research

    Education

    ABOUT JoVE

    Copyright © 2024 MyJoVE Corporation. All rights reserved