JoVE Logo
Faculty Resource Center

Sign In





Representative Results





Cancer Research

Monitoring Hippo Signaling Pathway Activity Using a Luciferase-based Large Tumor Suppressor (LATS) Biosensor

Published: September 13th, 2018



1Department of Pathology and Molecular Medicine, Queen's University
* These authors contributed equally

Here we present a luciferase-based biosensor to quantify the kinase activity of large tumor suppressor (LATS)-a central kinase in the Hippo signaling pathway. This biosensor has diverse applications in basic and translational research aimed at investigating Hippo pathway regulators in vitro and in vivo.

The Hippo signaling pathway is a conserved regulator of organ size and has important roles in the development and cancer biology. Due to technical challenges, it remains difficult to assess the activity of this signaling pathway and interpret it within a biological context. The existing literature on large tumor suppressor (LATS) relies on methods that are qualitative and cannot easily be scaled-up for screening. Recently, we have developed a bioluminescence-based biosensor to monitor the kinase activity of LATS-a core component of the Hippo kinase cascade. Here, we describe procedures for how this LATS biosensor (LATS-BS) can be used to characterize Hippo pathway regulators. First, we provide a detailed protocol for investigating the effect of an overexpressed protein candidate (e.g., VEGFR2) on LATS activity using the LATS-BS. Then, we show how the LATS-BS can be used for a small-scale kinase inhibitor screen. This protocol can feasibly be scaled-up to perform larger screens, which undoubtedly will identify novel regulators of the Hippo pathway.

The Hippo signaling pathway was first identified in Drosophila as a novel regulator of cell growth and animal size1,2. Since its initial discovery, mounting evidence has convincingly shown that the Hippo pathway plays critical roles in the development (e.g., early embryonic development, organ size control, and three-dimensional [3-D] morphology), tumorigenesis (e.g., tumor development, metastasis, angiogenesis, immune evasion, genomic instability, stress response, and drug resistance), and tissue homeostasis (e.g., stem cell renewal and differentiation and tissue regeneratio....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Investigation of a Putative Regulator of Hippo Signaling Using the LATS-BS

  1. Plating and transfection of cells
    1. Preparation of cell culture
      1. Warm 1x PBS, DMEM containing 10% FBS and 1% penicillin/streptomycin, and 0.25% trypsin-EDTA to 37 °C in a water bath for approximately 30 min.
      2. Thoroughly clean a biosafety cabinet with 70% ethanol.
      3. Place tissue culture dishes, Pasteur pipettes, serological pipettes, and pipette tips into the tissue cu.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The LATS-BS was cotransfected with different genes to evaluate their effect on LATS activity (Figure 3). In this experiment, Renilla was used as an internal control. The transient expression of YAP-5SA, a constitutive active form of YAP, causes increasing levels of YAP transcriptional targets and a subsequent increase in LATS kinase activity through an established feedback pathway25. MST, the upstream activator of LATS in the .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

While the Hippo pathway plays critical roles in various biological processes, and dysregulation of the Hippo pathway leads to cancer6, how the Hippo pathway is regulated in response to various stimuli is not completely understood. In addition, there has been no quantitative and real-time system to assess the activity of core Hippo components. Recently, we developed and validated a novel biosensor for measuring LATS kinase activity in the Hippo pathway24. This biosensor can .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by grants from the Canadian Institute of Health Research (CIHR#119325, 148629) and the Canadian Breast Cancer Foundation (CBCF) to XY. TA is supported by the Vanier Canada Graduate Scholarship and the Ontario International Graduate Scholarship. HJJVR is supported by a Queen Elizabeth II Graduate Scholarship in Science and Technology.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Trypsin-EDTA  Life Technologies 2520056 0.25%
Fetal Bovine Serum (FBS) Sigma F1051
DMEM Sigma D6429-500ml DMEM with high glucose 
Penicillin Streptomycin Life Technologies 15140122
PolyJet In Vitro DNA Transfection Reagent  Signagen SL100688.5
5x Passive lysis buffer Promega E194A 30 ml
Dual-Glo® Luciferase Assay System Promega E2940 100 ml kit
20/20 luminometer Turner Biosystems 998-2036 Single tube reader luminometer
GloMax®Navigator with dual injectors Promega GM2010 96-well plates reader luminometer

  1. Justice, R. W., Zilian, O., Woods, D. F., Noll, M., Bryant, P. J. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes & Development. 9 (5), 534-546 (1995).
  2. Xu, T., Wang, W., Zhang, S., Stewart, R. A., Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development. 121 (4), 1053-1063 (1995).
  3. Taha, Z., Janse van Rensburg, H. J., Yang, X. The Hippo Pathway: Immunity and Cancer. Cancers. 10 (4), 94 (2018).
  4. Maugeri-Saccà, M., De Maria, R. The Hippo pathway in normal development and cancer. Pharmacology & Therapeutics. 186, 60-72 (2018).
  5. van Rensburg, H. J. J., Yang, X. The roles of the Hippo pathway in cancer metastasis. Cellular Signalling. 28 (11), 1761-1772 (2016).
  6. Yeung, B., Yu, J., Yang, X. Roles of the Hippo pathway in lung development and tumorigenesis. International Journal of Cancer. 138 (3), 533-539 (2016).
  7. Zhao, Y., Yang, X. The Hippo pathway in chemotherapeutic drug resistance. International Journal of Cancer. 137 (12), 2767-2773 (2015).
  8. Yu, F. -. X., Guan, K. -. L. The Hippo pathway: regulators and regulations. Genes & Development. 27 (4), 355-371 (2013).
  9. Yang, X., Xu, T. Molecular mechanism of size control in development and human diseases. Cell Research. 21 (5), 715 (2011).
  10. Visser, S., Yang, X. LATS tumor suppressor: a new governor of cellular homeostasis. Cell Cycle. 9 (19), 3892-3903 (2010).
  11. Zhao, B., et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes & Development. 21 (21), 2747-2761 (2007).
  12. Hao, Y., Chun, A., Cheung, K., Rashidi, B., Yang, X. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. Journal of Biological Chemistry. 283 (9), 5496-5509 (2008).
  13. Ozawa, T., Kaihara, A., Sato, M., Tachihara, K., Umezawa, Y. Split Luciferase as an Optical Probe for Detecting Protein. Protein Interactions in Mammalian Cells Based on Protein Splicing. Analytical Chemistry. 73 (11), 2516-2521 (2001).
  14. Hashimoto, T., Adams, K. W., Fan, Z., McLean, P. J., Hyman, B. T. Characterization of oligomer formation of amyloid-β peptide using a split-luciferase complementation assay. Journal of Biological Chemistry. 286 (31), 27081-27091 (2011).
  15. Decock, M., et al. Analysis by a highly sensitive split luciferase assay of the regions involved in APP dimerization and its impact on processing. FEBS Open Bio. 5 (1), 763-773 (2015).
  16. Azad, T., Tashakor, A., Rahmati, F., Hemmati, R., Hosseinkhani, S. Oscillation of apoptosome formation through assembly of truncated Apaf-1. European Journal of Pharmacology. 760, 64-71 (2015).
  17. Brückner, A., Polge, C., Lentze, N., Auerbach, D., Schlattner, U. Yeast two-hybrid, a powerful tool for systems biology. International Journal of Molecular Sciences. 10 (6), 2763-2788 (2009).
  18. Pattnaik, P. Surface plasmon resonance. Applied Biochemistry and Biotechnology. 126 (2), 79-92 (2005).
  19. Clegg, R. M. Fluorescence resonance energy transfer. Current Opinion in Biotechnology. 6 (1), 103-110 (1995).
  20. Azad, T., Tashakor, A., Hosseinkhani, S. Split-luciferase complementary assay: applications, recent developments, and future perspectives. Analytical and Bioanalytical Chemistry. 406 (23), 5541-5560 (2014).
  21. Hu, C. -. D., Kerppola, T. K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nature Biotechnology. 21 (5), 539-545 (2003).
  22. Hosseinkhani, S. Molecular enigma of multicolor bioluminescence of firefly luciferase. Cellular and Molecular Life Sciences. 68 (7), 1167-1182 (2011).
  23. Paulmurugan, R., Gambhir, S. S. Combinatorial library screening for developing an improved split-firefly luciferase fragment-assisted complementation system for studying protein-protein interactions. Analytical Chemistry. 79 (6), 2346-2353 (2007).
  24. Azad, T., et al. A LATS biosensor screen identifies VEGFR as a regulator of the Hippo pathway in angiogenesis. Nature Communications. 9 (1), 1061 (2018).
  25. Moroishi, T., et al. A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes & Development. 29 (12), 1271-1284 (2015).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved