A subscription to JoVE is required to view this content. Sign in or start your free trial.
We describe establishment of a murine model for Parkinson's disease using MPTP, and behavioral assessments using cylinder and open field tests to measure motor function. We then use L-DOPA as one example to show how to apply this model in the study of PD drugs.
Parkinson’s disease (PD) is a common neurodegenerative disorder disease, causing the phenomenon of shaking, rigidity, slowness of movement and dementia. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) can lead to some Parkinson’s-like symptoms by destroying dopaminergic neurons in the substantia nigra of the brain. It has been thus used to establish PD models in various animal studies. Here, mice receive MPTP injections (20 mg/kg/day) for seven days and the behavioral tests are performed on the eighth day. This model is adapted efficiently in the study of PD. The behavioral tests here include the cylinder test and the open field test. The cylinder experiment is used to detect the animals’ ability to lift their front paws when put into a different environment. As the PD model mice show arching—the mouse arches its back—the number of paw liftings decrease. This test is easy to execute. The open field test is used to detect the amount of time the mice spend on running, walking, and remaining immobile. We analyze animals’ movements in open field using software and obtain data. Lastly, we use L-DOPA, one of the most commonly used PD drugs, as one example to show how to apply this model to the study of PD drugs. Our results indicate that MPTP neurotoxicity induces motor deficit which can be mitigated by L-DOPA.
Parkinson's disease (PD), one of the most common diseases among older individuals, is a long-term neurodegenerative disorder1. Patients always show the phenomenon of shaking, rigidity, slowness of movement and dementia that worsen over time2. Other symptoms including sensory, sleep, and emotional problems are also commonly observed2. The cause of PD is still unclear, but it is generally believed to involve both genetic and environmental factors, which induce loss of dopaminergic neurons in the substantia nigra3, and development of Lewy bodies and Lewy neurites in various regions of the brain4.
Among the studies of PD, 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)5 is adapted widely in recreating some PD symptoms in experimental models. In 1984, Langston et al. first found that injections of MPTP in squirrel monkeys resulted in Parkinsonism6. Although the MPTP rodent model doesn't show the presence of Lewy bodies, which is the biomarker of PD, MPTP causes Parkinson's-like symptoms by destroying dopaminergic neurons in the substantia nigra of the brain7. Compared to other drug model for PD such as those induced by 6-hydroxydopamine (6-OHDA)8 and 1-methyl-4-phenylpyridinium (MPP+)9, injection of MPTP is easy to execute and the MPTP model takes less time. Mice receive MPTP injections (20-30 mg/kg/day) for seven days, and the behavioral tests are performed on the eighth day10.
The open field test11 was first developed by Calvin S. Hall, an American12. In various studies, different kinds of behaviors are tested. In research which focuses on Parkinson's diseases, behaviors like locomotion activities and the speed of locomotion are tested to see if the animal's ability to move around is affected. Compared with other methods used to test the establishment of PD animals, open field test is easy to carry out because the equipment needed is simple, and prototyping and data analysis software (e.g., MATLAB, Excel) can be used to easily collect and graph the data. Also, the coefficient of variation is relatively small13, which means that the result of open field test is reliable. Another advantage over other methods is that the behaviors included in this experiment are easy to distinguish; the mice can be either running, walking or standing still. Usually the open field test can be used on rodents when the researcher needs to evaluate the subject's mobility.
The Cylinder test is also called the test of asymmetric use of forelimbs. When this test was first designed, it was used to test the asymmetric use of the rat's forelimbs14. Here, we use this test to analyze the animal's ability to stretch out and use both of its forelimbs to explore new surroundings. When the substantia nigra and corpus striatum are damaged by MPTP in the brain, the animal tends to arch its back and becomes less likely to stretch out and explore the unknown environment. This test is easy to execute and can give a preliminary result. However, this test has high internal variability, so it is generally used with along with other behavior experiments.
Taking L-DOPA, which is also known as levodopa or L-3,4-dihydroxyphenylalanine, is a common way to treat Parkinson's disease since one cause of PD is the decrease of dopamine in the . L-DOPA is the precursor to dopamine. But unlike dopamine, it can cross the blood-brain barrier, which means that it will be more efficient in increasing the concentration of dopamine in the brain area. After it crosses the blood-brain barrier, L-DOPA is converted into dopamine by L-amino acid decarboxylase15.
Here we describe the measurement and analysis of motor function in MPTP-induced-PD model mice using a cylinder test14 and a modified open field test. We administer L-DOPA as one example to show how to apply this model in the study of PD drugs. Our results indicate that MPTP induces motor deficit that can be mitigated by L-DOPA.
This study was performed according to the international, national and institutional rules considering animal experiments. The study protocol was approved by the animal ethics committee of Nankai University.
1. MPTP and L-DOPA administration
NOTE: Ten-week-old female BALB/c mice were provided by the Institute of Zoology, Chinese Academy of Sciences. Mice were housed six per cage under a 12 h light/dark cycle (lights on at 08:00-20:00), a constant temperature of 21-22 °C and a relative humidity of 55% ± 5%. Autoclaved standard mice chow of the same formulation and water ad libitum was given to all animals.
2. Cylinder test
NOTE: The behavioral tests were performed on day 8. L-DOPA was injected to the third group of mice 40 min before the behavioral tests. If the behavioral testing is not done in the same room where the animals are housed, animals need to be acclimated to the new room for 30-60 min before test.
3. Open field test
In the cylinder test, the decrease of rears against the wall was observed in mice (group 2) treated with MPTP from day 1 to day 7 and saline on day 8 as compared with saline-treated mice (group 1), while an increase of rears was observed in the mice (group 3) treated with MPTP from day 1 to day 7 and L-DOPA on day 8 as compared with the mice (group 2) treated with MPTP from day 1 to day 7 and saline on day 8 (Figure 1).
Due to destruction of dopaminergic neurons in the substantia nigra of the brain, MPTP causes Parkinson's-like symptoms in mice7. L-DOPA is the most preferred drug for PD ever since its clinical use, because it helps in maintaining normal daily activities in patients with PD, with effective suppression of motor abnormalities including akinesia and rigidity15. The mice treated with MPTP showed impairments in the behavioral tests like cylinder test and open field test, whi...
The authors have nothing to disclose.
Our work is funded by Tianjin Undergraduate Training Programs for Innovation and Entrepreneurship (Grant No. 63183004). This project was initiated in the State Key Laboratory of Medicinal Chemical Biology at Nankai University. The authors declare that there are no conflicts of interests.
Name | Company | Catalog Number | Comments |
70% Ethanol | Ruiboxing Company | RBX-64175 | |
Camera | BASLER | acA645-100gm | |
Cylinder test | Made in-house at Nankai University | N/A | |
Excel | Microsoft | N/A | |
Levodopa | Sigma-Aldrich | 72816 | |
Matalb 2017a | Mathworks | N/A | |
Mice | Institute of Zoology, Chinese Academy of Sciences | Balb/c | Adult female mice(10 weeks) |
MPTP | Yuanye Biological Technology Company Ltd., Shanghai | S31504-500mg | |
Open field test | Made in-house at Nankai University | N/A | |
Syringe | Solelybio | S-xsgwz-w | Irrigation |
Syringe | Jiangxi Fenglin Medical Application Co. | hc3824 | Intraperitoneal injection |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved