A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here we describe a method to assess lung expression of miRNAs that are predicted to regulate inflammatory genes using mice exposed to ozone or filtered air at different stages of the estrous cycle.
MicroRNA (miRNA) profiling has become of interest to researchers working in various research areas of biology and medicine. Current studies show a promising future of using miRNAs in the diagnosis and care of lung diseases. Here, we define a protocol for miRNA profiling to measure the relative abundance of a group of miRNAs predicted to regulate inflammatory genes in the lung tissue from of an ozone-induced airway inflammation mouse model. Because it has been shown that circulating sex hormone levels can affect the regulation of lung innate immunity in females, the purpose of this method is to describe an inflammatory miRNA profiling protocol in female mice, taking into consideration the estrous cycle stage of each animal at the time of ozone exposure. We also address applicable bioinformatics approaches to miRNA discovery and target identification methods using limma, an R/Bioconductor software, and functional analysis software to understand the biological context and pathways associated with differential miRNA expression.
microRNAs (miRNAs) are short (19 to 25 nucleotides), naturally occurring, non-coding RNA molecules.Sequences of miRNAs are evolutionary conserved across species, suggesting the importance of miRNAs in regulating physiological functions1. microRNA expression profiling has been proven to be helpful for identifying miRNAs that are important in the regulation of a variety of processes, including the immune response, cell differentiation, developmental processes, and apoptosis2. More recently, miRNAs have been recognized for their potential use in disease diagnostics and therapeutics. For researchers studying mechanisms of ge....
All methods described here have been approved by the Institutional Animal Care and Use Committee (IACUC) of Penn State University.
1. Assessment of the Estrous Cycle Stage
The different cell types observed in smears are used to identify the mouse estrous cycle stage (Figure 1). These are identified by cell morphology. During proestrus, cells are almost exclusively clusters of round-shaped, well-formed nucleated epithelial cells (Figure 1A). When the mouse is in the estrus stage, cells are cornified squamous epithelial cells, present in densely packed clusters (Figure 1B
MicroRNA profiling is an advantageous technique for both disease diagnosis and mechanistic research. In this manuscript, we defined a protocol to evaluate the expression of miRNAs that are predicted to regulate inflammatory genes in the lungs of female mice exposed to ozone in different estrous cycle stages. Methods for the determination of the estrous cycle, such as the visual detection method, have been described16. However, these rely on one-time measurements, and therefore are unreliable. To a.......
This research was supported by grants from NIH K01HL133520 (PS) and K12HD055882 (PS). The authors thank Dr. Joanna Floros for the assistance with ozone exposure experiments.
....Name | Company | Catalog Number | Comments |
C57BL/6J mice | The Jackson Laboratory | 000664 | 8 weeks old |
UltraPure Water | Thermo Fisher Scientific | 10813012 | |
Sterile plastic pipette | Fisher Scientific | 13-711-25 | Capacity: 1.7mL |
Frosted Microscope Slides | Thermo Fisher Scientific | 2951TS | |
Light microscope | Microscope World | MW3-H5 | 10X and 20X objective |
Ketathesia- Ketamine HCl Injection USP | Henry Schein Animal Health | 55853 | 90 mg/kg. Controlled drug. |
Xylazine Sterile Solution | Lloyd Laboratories | 139-236 | 10mg/kg. Controlled Drug. |
Ethanol | Fisher Scientific | BP2818100 | Dilute to 70% ethanol with water. |
21G gauge needle | BD Biosciences | 305165 | |
Syringe | Fisher Scientific | 329654 | 1mL |
Operating Scissors | World Precision Instruments | 501221, 504613 | 14cm, Sharp/Blunt, Curved and 9 cm, Straight, Fine Sharp Tip |
Tweezer Kit | World Precision Instruments | 504616 | |
-80 ËšC freezer | Forma | 7240 | |
Spectrum Bessman Tissue Pulverizers | Fisher Scientific | 08-418-1 | Capacity: 10 to 50mg |
RNase-free Microfuge Tubes | Thermo Fisher Scientific | AM12400 | 1.5 mL |
TRIzol Reagent | Thermo Fisher Scientific | 15596026 | |
Direct-zol RNA MiniPrep Plus | Zymo Research | R2071 | |
NanoDrop | Thermo Fisher Scientific | ND-ONE-W | |
miScript II RT kit | Qiagen | 218161 | |
Mouse Inflammatory Response & Autoimmunity miRNA PCR Array | Qiagen | MIMM-105Z | |
Thin-walled, DNase-free, RNase-free PCR tubes | Thermo Fisher Scientific | AM12225 | for 20 μl reactions |
miRNeasy Serum/Plasma Spike-in Control | Qiagen | 219610 | |
Microsoft Excel | Microsoft Corporation | https://office.microsoft.com/excel/ | |
Ingenuity Pathway Analysis | Qiagen | https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/ | |
R Software | The R Foundation | https://www.r-project.org/ | |
Thermal cycler or chilling/heating block | General Lab Supplier | ||
Microcentrifuge | General Lab Supplier | ||
Real-time PCR cycler | General Lab Supplier | ||
Multichannel pipettor | General Lab Supplier | ||
RNA wash buffer | Zymo Research | R1003-3-48 | 48 mL |
DNA digestion buffer | Zymo Research | E1010-1-4 | 4 mL |
RNA pre-wash buffer | Zymo Research | R1020-2-25 | 25 mL |
Ultraviolet ozone analyzer | Teledyne API | Model T400 | http://www.teledyne-api.com/products/oxygen-compound-instruments/t400 |
Mass flow controllers | Sierra Instruments Inc | Flobox 951/954 | http://www.sierrainstruments.com/products/954p.html |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved