A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The goal of this protocol is to demonstrate how to induce clustered stomata in cotyledons of Arabidopsis thaliana seedlings by immersion treatment with a sugar-containing medium solution and how to observe intracellular structures such as chloroplasts and microtubules in the clustered guard cells using confocal laser microscopy.
Stomatal movement mediates plant gas exchange, which is essential for photosynthesis and transpiration. Stomatal opening and closing are accomplished by a significant increase and decrease in guard cell volume, respectively. Because shuttle transport of ions and water occurs between guard cells and larger neighboring epidermal cells during stomatal movement, the spaced distribution of plant stomata is considered an optimal distribution for stomatal movement. Experimental systems for perturbing the spaced pattern of stomata are useful to examine the spacing pattern's significance. Several key genes associated with the spaced stomatal distribution have been identified, and clustered stomata can be experimentally induced by altering these genes. Alternatively, clustered stomata can be also induced by exogenous treatments without genetic modification. In this article, we describe a simple induction system for clustered stomata in Arabidopsis thaliana seedlings by immersion treatment with a sucrose-containing medium solution. Our method is easy and directly applicable to transgenic or mutant lines. Larger chloroplasts are presented as a cell biological hallmark of sucrose-induced clustered guard cells. In addition, a representative confocal microscopic image of cortical microtubules is shown as an example of intracellular observation of clustered guard cells. The radial orientation of cortical microtubules is maintained in clustered guard cells as in spaced guard cells in control conditions.
The plant stoma is an essential organ for gas exchange for photosynthesis and transpiration, and stomatal movement is accomplished by significant changes in guard cells through ion-driven uptake and release of water. Under a microscope, we can observe a spaced distribution pattern of stomata on the surfaces of leaves and stems. This spaced distribution of stomata is considered to help stomatal movement, which is regulated by ion and water exchange between guard cells and neighboring epidermal cells1,2. Experimental induction systems for clustered stomata are useful for investigating the importance of the spaced distribution of stomata.
It has been reported that spatial clustering of stomata can be induced by genetic modification of key genes for guard cell differentiation3,4 or treatment with a chemical compound5. We also reported that immersion treatment with a medium solution supplemented with sugars including sucrose, glucose, and fructose caused stomatal clustering in cotyledons of Arabidopsis thaliana seedlings6. Reduced callose in new cell walls separating meristemoids and epidermal cells was observed in the sucrose-treated cotyledon epidermis, suggesting that sucrose solution immersion treatment negatively affects the cell wall, which prevents the leakage and ectopic action of key gene products for guard cell differentiation (e.g. transcription factors) towards adjacent epidermal cells6. A similar mechanism was suggested from studies on gsl8/chor mutants7,8. Our experimental system for reproducible induction of clustered stomata using sucrose-containing medium solution is quite easy and cheap. It can also be used to investigate intracellular structures such as organelles and the cytoskeleton in the clustered guard cells when applied to transgenic lines expressing fluorescent markers that label intracellular structures9,10.
1. Preparation of 3% Sucrose-containing 1/2 Murashige-Skoog Medium Solution
2. Induction of Clustered Stomata by Sucrose-Containing Medium Solution Immersion Treatment
3. Microscopic Observation of Clustered Stomata
Here, the protocol for a simple method of inducing stomatal clustering with sucrose-containing medium solution in A. thaliana seedlings has been presented. The clustered guard cells grown in sucrose-containing medium solution (Figure 1B) have larger chloroplasts than guard cells grown in sucrose-free control conditions (Figure 1A). The enlargement of chloroplasts was confirmed with CT-GF...
We have presented protocols for induction of clustered stomata in A. thaliana seedlings by immersion treatment with a sucrose-containing medium solution. As shown here, this method is very simple and requires no specialized skill but can efficiently induce clustered stomata. More than 45% of guard cells are clustered with 3% sucrose-containing medium solution (mean values of more than 20 independent observations)6. Moreover, this experimental system can be directly applied to transgenic o...
The authors have nothing to disclose.
We are grateful to Prof. Seiichiro Hasezawa for his kind support of our work. This work was supported by grants from the Japan Society for the Promotion of Science (JSPS) KAKENHgrant numbers 17K19380 and 18H05492, from The Sumitomo Foundation for a Grant for Basic Science Research Projects grant number 160146, and The Canon Foundation to T.H. This experimental system was developed under a financial support from the JSPS KAKENHgrant number 26891006 to K. A. We thank Robbie Lewis, MSc, from Edanz Group (www.edanzediting.com/ac) for editing a draft of the manuscript.
Name | Company | Catalog Number | Comments |
24-well plate | Sumitomo Bakelite | MS-0824R | |
488 nm laser | Furukawa Denko | HPU-50101-PFS2 | |
488 nm laser | Olympus | Sapphire488-20/O | |
510 nm long-pass filter | Olympus | BA510IF | |
524 - 546 nm band-pass filter | Semrock | FF01-535/22-25 | |
530 nm short-pass filter | Olympus | BA530RIF | |
561 nm laser | CVI Melles Griot | 85-YCA-025-040 | |
604 - 644 nm band-pass filter | Semrock | FF01-624/40-25 | |
Confocal laser scanning head | Yokogawa | CSU10 | |
Confocal laser scanning head | Olympus | FV300 | |
Cooled CCD camera | Photometrics | CoolSNAP HQ2 | |
Image acquisition software | Molecular Devices | MetaMorph version 7.8.2.0 | |
Image acquisition software | Olympus | FLUOVIEW v5.0 | |
Immersion oil | Olympus | Immersion Oil Type-F | ne = 1.518 (23 degrees) |
Inverted microscope | Olympus | IX-70 | |
Inverted microscope | Olympus | IX-71 | |
Murashige and Skoog Plant Salt Mixture | FUJIFILM Wako Pure Chemical Corporation | 392-00591 | Murashige T and Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15(3), 473-497. |
Objective lens | Olympus | UPlanApo 100x / 1.35 NA Oil Iris 1.35 | NA = 1.35 |
Objective lens | Olympus | UPlanAPO 40x / 0.85 NA | NA = 0.85 |
Sucrose | FUJIFILM Wako Pure Chemical Corporation | 196-00015 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved