Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a protocol for fabrication of a closed-type wireless nanopore electrode and subsequent electrochemical measurement of single nanoparticle collisions.

Abstract

Measuring the intrinsic features of single nanoparticles by nanoelectrochemistry holds deep fundamental importance and has potential impacts in nanoscience. However, electrochemically analyzing single nanoparticles is challenging, as the sensing nanointerface is uncontrollable. To address this challenge, we describe here the fabrication and characterization of a closed-type wireless nanopore electrode (WNE) that exhibits a highly controllable morphology and outstanding reproducibility. The facile fabrication of WNE enables the preparation of well-defined nanoelectrodes in a general chemistry laboratory without the use of a clean room and expensive equipment. One application of a 30 nm closed-type WNE in analysis of single gold nanoparticles in the mixture is also highlighted, which shows a high current resolution of 0.6 pA and high temporal resolution of 0.01 ms. Accompanied by their excellent morphology and small diameters, more potential applications of closed-type WNEs can be expanded from nanoparticle characterization to single molecule/ion detection and single-cell probing.

Introduction

Nanoparticles have attracted tremendous attention due to diverse features such as their catalytic ability, particular optical features, electroactivity, and high surface-to-volume ratios1,2,3,4. Electrochemical analysis of single nanoparticles is a direct method for understanding the intrinsic chemical and electrochemical processes at the nanoscale level. To achieve highly sensitive measurements of single nanoparticles, two electrochemical approaches have been previously applied to read out nanoparticle information from current responses

Protocol

1. Preparation of Solutions

NOTE: Pay attention to general safety precautions for all chemicals. Dispose of chemicals in a fume hood, and wear gloves, goggles, and a lab coat. Keep flammable liquids away from fire or sparks. All aqueous solutions were prepared using ultrapure water (18.2 MΩ cm at 25 °C). The prepared solutions were filtered using a 0.22 μm pore-size filter.

  1. Preparation of KCl solution
    1. Dissolve 0.074 g of potassium chlorid.......

Representative Results

We demonstrate a facile approach to fabricate a well-defined 30 nm wireless nanopore electrode based on a quartz conical nanopipette. The fabrication of a nanopipette is demonstrated in Figure 1, which includes three main steps. A microcapillary with an inner diameter of 0.5 mm and outer diameter of 1.0 mm is fixed in the puller, then a laser is focused on the center of the capillary to melt the quartz. By applying forces to the terminals of the capillary, it.......

Discussion

Fabrication of a well-defined nanopipette is the first step in the closed-type WNE fabrication process. By focusing a CO2 laser onto the center of the capillary, one capillary separates into two symmetrical nanopipettes with nanoscale conical tips. The diameter is easily controlled, ranging from 30-200 nm, by adjusting the parameters of the laser puller. It is noted that the parameters for pulling can vary for different pipette pullers. The environmental temperature and humidity can also influence the final di.......

Acknowledgements

This research was supported by the National Natural Science Foundation of China (61871183,21834001), Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-02-E00023), the “Chen Guang” Project from the Shanghai Municipal Education Commission and Shanghai Education Development Foundation (17CG27).

....

Materials

NameCompanyCatalog NumberComments
AcetoneSigma-Aldrich650501Highly flammable and volatile
Analytical balanceMettler ToledoME104E
Axopatch 200B amplifierMolecular Devices
Blu-Tack reusable adhesiveBostik
Centrifuge tubeCorning Inc.Centrifuge Tubes with CentriStar Cap, 15 ml
Chloroauric acidEnergy ChemicalE0601760010HAuCl4
Clampfit 10.4 softwareMolecular Devices
Digidata 1550A digitizerMolecular Devices
DS Fi1c true-color CCD cameraNikon
Ecoflex 5 Addtion cure silicone rubberSmooth-On17050377
Eppendorf Reference 2 pipettesEppendorf49200090410, 100 and 1000 µL
EthanolSigma-Aldrich24102Highly flammable and volatile
Faraday cageCopper
iXon 888 EMCCDAndor
Microcentrifuge tubesAxygen Scientific0.6, 1.5 and 2.0 mL
MicroloaderEppendorf5242 956.00320 µL
Microscope Cover GlassFisher ScientificLOT 1693820 mm*60 mm-1 mm thick
Milli-Q water purifierMilliporeSIMS00000Denton Electron Beam Evaporator
P-2000 laser pullerSutter Instrument
Pipette tipsAxygen Scientific10, 200 and 1,000 µL
Potassium chloride,+D25+A2:F2+A2:F25Sigma AldrichP9333-500GKCl
Quartz pipettesSutterQF100-50-7.5O.D.:1.0 mm, I.D.:0.5 mm, 75 mm length
RefrigeratorSiemens
Silicone thinnerSmooth-On1506330
Silver wireAlfa Aesar11466
Sodium borohydride,Tianlian Chem. Tech.71320NaBH4
Ti-U inverted dark-field microscopeNikon

References

  1. Vajda, S., et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nature Materials. 8 (3), 213-216 (2009).
  2. Liu, G. L., Long, Y. T., Choi, Y., Kang, T., Lee, L. P.

Explore More Articles

Nanopore ElectrodeSingle Nanoparticle AnalysisWireless NanoporeElectrochemical MeasurementNanoscale ElectrodeLocalized Surface Plasmon ResonanceNanopipette FabricationCarbon Dioxide Laser Puller

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved