A subscription to JoVE is required to view this content. Sign in or start your free trial.
The low-cost protocol consisting of footprint analysis and hanging box test after restraint stress is useful for evaluating the movement disorders of mouse model.
Gait disturbance is frequently observed in patients with movement disorders. In mouse models used for movement disorders, gait analysis is important behavioral test to determine whether the mice mimic the symptoms of patients. Motor deficits are often induced by stress when no spontaneous motor phenotype is observed in the mouse models. Therefore, gait analysis followed by stress loading would be a sensitive method for evaluating the motor phenotype in mouse models. However, researchers face the requirement of an expensive apparatus to obtain quantitative results automatically from gait analysis. For stress, stress loading by simple methods without expensive apparatuses required for electric shock and forced running is desirable. Therefore, we introduce a simple and low-cost protocol consisting of footprint analysis with paper and ink, hanging box test to evaluate motor function, and stress loading defined by restraint with a conical tube. The motor deficits of mice were successfully detected by this protocol.
Movement disorders are defined as disturbances of the nervous system showing an excess or paucity of voluntary or automatic movements1. In particular, gait disturbance is frequently documented among patients with movement disorders2,3,4. Therefore, gait analysis is a suitable behavioral test for the validation of animal models of movement disorders. In mice, automated gait analyses have been performed for walking at natural speed5 and at adjustable speeds by treadmill6,7. These analyses provide quantitative results of gait automatically. An alternative method to detect gait disturbance is called footprint analysis. After labeling the bottoms of the feet with ink, mice walk on paper, and the footprints are analyzed. Initially, Vaseline and powdered charcoal were used to visualize the footprint8, and then were replaced by ink on polygraph paper9 and photographic developer on photographic paper10. A cheaper and less toxic method using ink and paper than the other methods remains to date11. Footprint analysis is less expensive compared with automated analysis5,6,7 and would be useful to evaluate the movement disorders in mouse models for the researchers without abundant research funds.
The hanging box test is a kind of four limb hanging tests using wire cage lid12 and wire mesh screen13. The box is an apparatus with rotatable mesh lid on the top of box along a center bar. In addition to gait analysis, the test can be inexpensively and easily performed. Therefore, we conducted the hanging box test to evaluate grip strength and balance, in addition to the footprint analysis in this protocol.
Stress induces the symptoms of movement disorders14,15. Motor deficits are often induced by several chronic stresses even when no spontaneous motor phenotype is observed in the mouse models of a movement disorder16,17,18. Restraint is one of the commonly used methods for stress loading in mice, because the animal is not physically harmed19 and cost is less compared with other methods such as electric shock with dedicated apparatus and forced running with use of a treadmill. Restraint by a tube, which is performed by confining a mouse in a holed 50 mL conical tube, is easier than other methods such as wire mesh strainer, taped limb, and wrapping of animal with gauze (reviewed20). In this paper, we summarize the protocols of footprint analysis and the hanging box test after restraint by a tube. This protocol would help us to use mouse models of movement disorders without spontaneous motor phenotype.
All animal experiments were conducted in a humane manner. The Institutional Animal Experiment Committee of Jichi Medical University approved the study. The study was conducted in accordance with the Institutional Regulation for Animal Experiment and Fundamental Guideline for Proper Conduct of Animal Experiment and Related Activities in Academic Research Institutions under the jurisdiction of the MEXT of Japan. Mice used in this protocol have been described previously21.
1. Hanging Box Test
2. Footprint Analysis
NOTE: Following the hanging box test, perform the footprint analysis.
3. Restraint Stress Loading
4. Experimental Schedule (Figure 4):
The heterozygous male mice of Atp1a3 (Atp1a3+/−) that are the mouse model for rapid onset dystonia parkinsonism and wild-type littermates were used in this protocol. Atp1a3+/− showed significantly shorter stride lengths of forelimb and hindlimb than those of the wild type at 4 weeks of age (Figure 5A and Figure 5B, open circle and square). 'Stressed' At...
The footprint analysis and the hanging box test are simple and inexpensive behavioral tests for the motor function of mice. The neurobehavioral phenotypes in several mouse models have been successfully detected by these tests. For example, shortened stride length in amyotrophic lateral sclerosis24, increased length of asymmetrical stride in ataxia-telangiectasia25, increased length of overlap in Huntington's disease26 and dystonia
The authors have nothing to disclose.
This work was supported by JSPS (Japan Society for the Promotion of Science) KAKENHI (Grant-in-Aid for Scientific Research C), Grant number 18K07373 (H.S.) and Subsidies for Private Universities.
Name | Company | Catalog Number | Comments |
Hanging box | O’hara & Co. | http://ohara-time.co.jp/products/wire-hanging-test/ | |
Marking pen | ZEBRA | MO-120-MC-BK | |
Goal box | O’hara & Co. | http://ohara-time.co.jp/products/balanced-beam-test/ | Accessory for apparatus of balanced beam test |
Boxes | O’hara & Co. | - | Side wall of runway |
Black ink | Shin-asahi | - | |
Red ink | Maruyamakogyo | BC-6 | |
Disposable Petri Dish | Corning | 351008 | Petri dishe (35 mm in diameter) |
Askul Multipaper Super White J Monochrome A3 | Askul | 701-712 | White paper (29.7 cm x 42 cm x 0.09mm) |
50 mL Conical tube | Corning | 430829 | |
Square drill | KAKURI Corporation | DIY FACTORY (K32-0313) |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved