A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Proteome characterization of ocular microvascular beds is pivotal for in-depth understanding of many ocular pathologies in humans. This study demonstrates an effective, rapid, and robust method for protein extraction and sample preparation from small blood vessels employing the porcine short posterior ciliary arteries as model vessels for mass-spectrometry-based proteomics analyses.
The use of isolated ocular blood vessels in vitro to decipher the pathophysiological state of the eye using advanced technological approaches has greatly expanded our understanding of certain diseases. Mass spectrometry (MS)-based proteomics has emerged as a powerful tool to unravel alterations in the molecular mechanisms and protein signaling pathways in the vascular beds in health and disease. However, sample preparation steps prior to MS analyses are crucial to obtain reproducible results and in-depth elucidation of the complex proteome. This is particularly important for preparation of ocular microvessels, where the amount of sample available for analyses is often limited and thus, poses a challenge for optimum protein extraction. This article endeavors to provide an efficient, rapid and robust protocol for sample preparation from an exemplary retrobulbar ocular vascular bed employing the porcine short posterior ciliary arteries. The present method focuses on protein extraction procedures from both the supernatant and pellet of the sample following homogenization, sample cleaning with centrifugal filter devices prior to one-dimensional gel electrophoresis and peptide purification steps for label-free quantification in a liquid chromatography-electrospray ionization-linear ion trap-Orbitrap MS system. Although this method has been developed specifically for proteomics analyses of ocular microvessels, we have also provided convincing evidence that it can also be readily employed for other tissue-based samples.
The advancement in the field of proteomics, which permits integrated and unsurpassed data collection power, has greatly revolutionized our understanding of the molecular mechanisms underlying certain disease conditions as well as in reflecting the physiological state of a specific cell population or tissue1,2,3,4. Proteomics has also proved to be an important platform in ophthalmic research owing to the sensitivity and unbiased analysis of different ocular samples that facilitated identification of potential disease markers for eventual diagnosis and prognosis, as evidenced elegantly by many studies in recent years, including some of ours1,5,6,7,8,9,10. However, it is often difficult to obtain human samples for proteomic analyses due to ethical reasons, especially considering the need for control material from healthy individuals for reliable comparative analyses. On the other hand, it is also challenging to obtain sufficient amount of samples for optimal and reliable mass spectrometric analyses. This is particularly crucial for mass-limited biological materials such as the micro-blood vessels of the eye. One such major retrobulbar blood vessel that plays pivotal roles in the regulation of ocular blood flow is the short posterior ciliary artery (sPCA). Any perturbation or anomalies in this vascular bed may result in severe clinical repercussions, which can lead to the pathogenesis of several sight-threatening diseases such as glaucoma and nonarteritic anterior ischemic optic neuropathy (NAION)11,12. However, there is a lack of studies elucidating the proteome changes in this arterial bed due to the above-mentioned drawbacks. Therefore, in recent years, the house swine (Sus scrofa domestica Linnaeus, 1758) has emerged as a good animal model in ophthalmic research owing to the high morphologic and phylogenetic similarities between humans and pigs13,14,15. Porcine ocular samples are easily available and most importantly, are more accurate representation of human tissues.
Considering the important role of these blood vessels in the eye, as well as the dearth of methodology catered for efficient protein extraction and analyses from these microvessels, we have previously characterized the proteome of the porcine sPCA using an in-house protocol that resulted in the identification of a high number of proteins16. Based on this study, we have further optimized and described in-depth our methodology in this article, which allows proteome analysis from minute amounts of samples using the porcine sPCA as model tissue. Albeit the main aim of this study was to establish a MS-compatible methodology for mass-limited ocular blood vessels, we have provided substantial experimental evidence that the described workflow can also be broadly applied to various tissue-based samples.
It is envisioned that this workflow will be instrumental for preparation of high-quality MS-compatible samples from small quantities of materials for comprehensive proteome analyses.
Access restricted. Please log in or start a trial to view this content.
All experimental procedures using animal samples were performed in strict adherence to the Association for Research in Vision and Ophthalmology (ARVO) Statement for the Use of Animals in Ophthalmic and Vision Research and by institutional guidelines. This study was conducted and approved at the Department of Ophthalmology, University Medical Centre Mainz.
NOTE: Porcine eyes together with optic nerve and extraocular tissues were obtained fresh from the local abattoir immediately post-mortem. Enucleated eyes were transported to the laboratory in ice-cold phosphate buffered saline (PBS) and used immediately. The schematic overview of the workflow employed is as depicted in Figure 1.
1. Solutions
2. Isolation of Short Posterior Ciliary Arteries
NOTE: The porcine eye is basically divided into the anterior (Figure 2A) and posterior sections (Figure 2B).
3. Sample Preparation
4. Pellet Digestion
5. Sample Cleaning and Buffer Exchange
6. Protein Measurement
7. One-dimensional Gel Electrophoresis (1DE)
8. In-gel Tryptic Digestion
NOTE: This protocol is according to the method by Shevchenko et al.17, with slight modifications. This procedure should be carried out in a laminar flow hood and use dedicated set of pipettes, tips, tubes, and glassware specifically for this purpose. Wear gloves and appropriate lab apparel at all times to prevent keratin and other contamination. Prepare all solutions and reagents used in this procedure shortly before use.
9. Peptide Purification
NOTE: This peptide sample desalting and purification procedure is carried out with the use of C18 pipette tips (see C15 in the Table of Materials). Use a new tip for each sample.
10. Liquid chromatography-electrospray Ionization-MS/MS Analyses
NOTE: Label-free quantitative proteomics analysis is performed on a liquid chromatography-electrospray ionization-linear ion trap-Orbitrap (LC-ESI-LTQ-Orbitrap) MS system. The LC is composed of Rheos Allegro quaternary pump equipped with an online degasser (coupled to an HTS PAL autosampler, and the system comprises a 30 mm x 0.5 mm C18 pre-column connected to a 150 mm x 0.5 mm C18 column. Use reverse phase aqueous solvent A consisting of LC-MS grade water with 0.1% (v/v) formic acid and organic solvent B consisting of LC-MS grade acetonitrile with 0.1% (v/v) formic acid. Use the gradient with a running time of 60 min per gel band, as described in detail in our previous studies6,16.
Access restricted. Please log in or start a trial to view this content.
Limited sample availability is one of the major drawbacks in ophthalmic research. Correspondingly, extraction methods for optimum protein yield from small amounts of samples such as ocular blood vessels are often debatable. To date, there is a paucity of methods catered particularly for protein extraction from retrobulbar blood vessels. Therefore, as a first step in method optimization and as a proof-of-principle to compare the efficacy and robustness of several commonly employed protein ...
Access restricted. Please log in or start a trial to view this content.
Comprehensive proteome profiling of a diverse range of ocular samples is an important and indispensable first step to elucidate the molecular mechanisms and signaling pathways implicated in health and disease. In order to obtain high quality data and to ensure the reproducibility of results obtained from these analyses, the preceding sample preparation steps are crucial, as highlighted in a review by Mandal et al. that discussed in-depth the sample processing procedures for different parts of the eye employing two-dimens...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
Dr. Manicam is supported by the Internal University Research Funding (Stufe 1) from the University Medical Centre of the Johannes Gutenberg University Mainz and a grant from the Deutsche Forschungsgemeinschaft (MA 8006/1-1).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
A. Chemicals | |||
1, 4-Dithiothreitol (DTT) | Sigma-Aldrich | 1.11474 | |
Calcium chloride dihydrate (CaCl2) | Carl Roth | 5239.1 | 2.5 mM |
Dulbecco's phosphate-buffered saline (PBS) | Thermo Fisher Scientific | 14190169 | |
Formic acid (CH2O2) | AppliChem | A0748 | |
HPLC-grade acetonitrile (ACN, C2H3N) | AppliChem | A1605 | |
HPLC-grade methanol (CH3OH) | Fisher Scientific | M/4056/17 | |
HPLC-grade water | AppliChem | A1589 | |
Iodoacetamide (IAA) | Sigma-Aldrich | I6125 | |
Kalium chloride (KCl) | Carl Roth | 6781.1 | 4.7 mM |
Kalium dihydrogen phosphate (KH2PO4) | Carl Roth | 3904.2 | 1.2 mM |
LC-MS-grade acetic acid | Carl Roth | AE69.1 | |
Magnesium sulphate (MgSO4) | Carl Roth | 261.2 | 1.2 mM |
NuPAGE Antioxidant | Thermo Fisher Scientific (Invitrogen) | NP0005 | |
NuPAGE LDS Sample buffer | Thermo Fisher Scientific (Invitrogen) | NP0007 | 4x |
NuPAGE MES SDS Running Buffer | Thermo Fisher Scientific (Invitrogen) | NP0002 | 20x |
NuPAGE Sample reducing agent | Thermo Fisher Scientific (Invitrogen) | NP0004 | 10x |
SeeBlue Plus2 pre-stained protein standard | Thermo Fisher Scientific (Invitrogen) | LC5925 | |
Sequencing grade modified trypsin | Promega | V5111 | |
Sodium chloride (NaCl) | Carl Roth | 9265.2 | 118.3 mM |
Sodium hydrogen carbonate (NaHCO3) | Carl Roth | 965.3 | 25 mM |
Trifluoroacetic acid (TFA, C2HF3O2) | Merck Millipore | 108178 | |
α-(D)-(+)- Glucose monohydrate | Carl Roth | 6780.1 | 11 mM |
B. Reagents and Kits | |||
0.5 mm zirconium oxide beads | Next Advance | ZROB05 | |
1.0 mm zirconium oxide beads | Next Advance | ZROB10 | |
Colloidal Blue Staining Kit | Thermo Fisher Scientific (Invitrogen) | LC6025 | To stain 25 mini gels per kit |
NuPAGE 4-12 % Bis-Tri gels | Thermo Fisher Scientific (Invitrogen) | NP0321BOX | 1.0 mm, 10-well |
Pierce Bicinchoninic Acid (BCA) Protein Assay Kit | Thermo Fisher Scientific | 23227 | |
ProteoExtract Transmembrane Protein Extraction Kit, TM-PEK | Merck Millipore | 71772-3 | 20 reactions per kit |
Tissue Protein Extraction Reagent (T-PER) | Thermo Scientific | 78510 | |
C. Tools | |||
96-well V-bottom plates | Greiner Bio-One | 651180 | |
Corning 96-well flat-bottom plates | Sigma-Aldrich | CLS3595-50EA | |
Disposable microtome blades | pfm Medical | 207500014 | |
Disposable scalpels #21 | pfm Medical | 200130021 | |
Dissection pins | Carl Roth | PK47.1 | |
Extra Fine Bonn Scissors | Fine Science Tools | 14084-08 | |
Falcon conical centrifuge tubes (50 mL) | Fisher Scientific | 14-432-22 | |
Mayo scissors, Tough cut | Fine Science Tools | 14130-17 | |
Precision tweezers | Fine Science Tools | 11251-10 | Type 5 |
Precision tweezers, straight with extra fine tips | Carl Roth | LH53.1 | Type 5 |
Self-adhesive sealing films for microplates | Ratiolab (vWR) | RATI6018412 | |
Standard pattern forceps | Fine Science Tools | 11000-12 | |
Student Vannas spring scissors | Fine Science Tools | 91501-09 | |
Vannas capsulotomy scissors | Geuder | 19760 | Straight, 77 mm |
ZipTipC18 pipette tips | Merck Millipore | ZTC18S096 | |
D. Equipment and devices | |||
150 × 0.5 mm BioBasic C18 column | Thermo Scientific, Rockford, USA | 72105-150565 | |
30 × 0.5 mm BioBasic C18 pre-column | Thermo Scientific, Rockford, USA | 72105-030515 | |
Amicon Ultra-0.5 3K Centrifugal Filter Devices | Merck Millipore | UFC500396 | Pack of 96. |
Analytical balance | Sartorius | H51 | |
Autosampler | CTC Analytics AG, Zwingen, Switzerland | HTS Pal | |
BBY24M Bullet Blender Storm | Next Advance | NA-BB-25 | |
Eppendorf concentrator, model 5301 | Sigma-Aldrich | Z368172 | |
Eppendorf microcentrifuge, model 5424 | Fisher Scientific | 05-403-93 | Non-refrigerated |
Heraeus Primo R Centrifuge | Thermo Scientific | 75005440 | Refrigerated |
Labsonic M Ultrasonic homogenizer | Sartorius | BBI-8535027 | |
LC-MS pump, model Rheos Allegro | Thermo Scientific, Rockford, USA | 22080 | |
LTQ Orbitrap XL mass spectrometer | Thermo Scientific, Bremen, Germany | ||
Multiskan Ascent plate reader | Thermo Labsystems | v2.6 | |
Rotator with vortex | neoLab | 7-0045 | |
Titanium probe (Ø 0.5 mm, 80 mm long) | Sartorius | BBI-8535612 | |
Ultrasonic bath, type RK 31 | Bandelin | 329 | |
Xcell Surelock Mini Cell | Life Technologies | El0001 |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved