A subscription to JoVE is required to view this content. Sign in or start your free trial.
We present a protocol to dissociate the intertwining factors of integrative difficulty and unexpectedness in semantically anomalous sentences by applying multiple repetitions to enhance participant's expectancy for anomalous sentences. The dissociation helps to investigate the major contributor of elicited event-related potentials (ERP) effects such as N400 in language studies.
The confounding factors of unexpectedness and semantic integration difficulty naturally residing in anomalous sentences in language studies make it difficult to determine the underlying processing mechanism of ERP components. Unlike the traditional static approach of manipulating expectancy through corpus frequency or cloze probability, this protocol proposes a dynamic method to enhance participants' expectancy for rarely-met anomalous sentences by multiple repetitions while maintaining their semantic integration difficulties. To address the time cost increase resulting from multiple repetitions, this protocol proposes to repeat only the strictly simplified core structure extracted from the anomalous sentence before presenting the semantically enriched, much more informative complete anomalous sentence containing the anomalous core structure to reinitiate the semantic integration processing. The complete anomalous sentence elicited a P600 effect. It suggests that the participants did not give up processing the anomalous information after repetitions and the same semantic integration difficulty was successfully reinitiated. Importantly, the representative experimental results reveal that the greatly attenuated N400 effect caused by multiple repetitions was not recovered by the follow-up reinitiated semantic integration difficulty. It suggests that the attenuated N400 effect should be mainly attributed to the enhancement of expectancy for anomalous information by multiple repetitions. The experimental results show that this method can effectively enhance participants' expectancy for anomalous sentences while retaining the semantic integration difficulty.
Anomalous sentences are widely used by linguists to study online cognitive processing of normal languages. For example, in event-related potentials (ERP) studies, sentences with semantic anomalies (e.g., "He spread the warm bread with socks.") were reported to elicit an N400 effect1 (but also see some other studies reporting a semantic P600 effect2,3), while sentences with syntactic difficulties or anomalies (e.g., "The woman persuaded to answer the door…") were reported to elicit a P600 effect4,5. These electrophysiological components are widely used as reliable indicators for investigating the normal temporal courses of processing information from different aspects of language, such as syntax and semantics.
Anomalous sentences cause great difficulties for semantic integration processing during comprehension. However, confounding factors such as unexpectedness (i.e., any anomalous expression is naturally an unexpected expression) make it difficult to determine the true cognitive process underlying the observed effect elicited by anomalous sentences. For example, if an N400 effect is elicited by an anomalous sentence, it is unclear whether it is caused by unexpectedness6,7,8 or integrative difficulty1,9,10.
To ascertain whether it is expectancy or semantic integration difficulty that contributes to the elicited electrophysiological effect, we need to dissociate these two factors. Traditionally, expectancy is often measured by corpus frequency (in word studies) or cloze probability (in sentence studies). The widely applied method to manipulate expectancy in traditional experiments is by choosing stimuli with high and low scores in expectancy to form expected and unexpected groups. This method is effective in manipulating expectancy and has produced abundant insightful results.
However, as a static approach to manipulating expectancy, it has one limitation: it is hard for the expected and unexpected groups to have the same semantic integration difficulty. With this manipulation, the stimuli selected for the expected and unexpected groups have to be different; thus the semantic integration difficulty is altered when we manipulate expectancy by using different stimuli with different expectancy values or cloze probabilities). While we may find unexpected but reasonable expressions (i.e., unexpected expressions made up of words that can be successfully integrated into a reasonable message), it is possible that the integrative efforts required by these unexpected but reasonable expressions are different from those required by normal expressions. If the differences are not controlled, significant differences in brain responses might ensue, as clear evidence demonstrates that the integrative processing of unexpected but reasonable new metaphorical expressions triggers brain responses quite different from those triggered by conventional metaphors11,12.
To address this issue, we propose a new method to dynamically enhance participants' expectancy for anomalous sentences while trying to maintain the semantic integration difficulty. Specifically, we quickly familiarize participants with unfamiliar anomalous sentences and thus enhance their expectancy through multiple repetitions. Importantly, multiple repetitions do not change the stimulus itself; therefore, the semantically anomalous information itself remains unchanged (i.e., the critical word still cannot be successfully integrated into the context).
However, the brain might give up integration after learning that the anomalous information cannot be successfully integrated into the previous context at all (i.e., the integration processing might be absent so that there is no integration difficulty). Therefore, this protocol proposes to repeat only the core anomalous information extracted from the anomalous sentence first, and then use the complete anomalous sentence which contains the identical anomalous information as a semantically enriched version of this core anomalous information, to initiate new semantic integration processing in the repetition condition. With the identical anomalous information in the semantically enriched complete anomalous sentence and the initiated new semantic integration processing, we assume that the semantic integration difficulty triggered by the anomalous information in the complete anomalous sentence after multiple repetitions should remain almost the same as that triggered by the anomalous information before repetitions (regardless of the status of semantic integration processing during repetitions). Hence, we assume the factor of semantic integration difficulty in the semantically enriched complete anomalous sentences remains the same after repetitions as in the correspondingly simplified core structures, but the expectancy is greatly enhanced.
Based on these assumptions, we compare the N400 effect elicited by semantically enriched complete anomalous sentences containing the repeated core anomalous information with that elicited by newly-met complete anomalous sentences, to investigate the major contributor of this elicited ERP effect. The working hypotheses are as follows: according to previous studies, the N400 effect would be significantly attenuated by repetitions. On the basis of the attenuated N400, if the newly initiated semantic integration of the same anomalous information causes recovery of the attenuated N400 effect to a level similar to that elicited by the same type of anomalous information contained in newly-met anomalous sentences with no repetitions, then it suggests that the semantic integration difficulty is the dominant contributor of the elicited N400 effect; otherwise it suggests that unexpectedness is the major contributor.
The present protocol was approved by the Institutional Review Board of Tsinghua University.
1. Stimuli construction
(a) Example of semantically enriched complete anomalous sentences and their preceding core structures | ||
Repeated Core Structure | Semantically Enriched Complete Sentence | |
Control | These two components were separated by a centrifugal device. | |
Repetition Group | * Component is participled… | * These two components were participled by a centrifugal device. |
Non-repetition Group | * Component is differenced… | * These two components were semicoloned by a centrifugal device. |
(b) Example of the simplified core structures in the repetition part | ||
Implausible Expressions | Plausible Expressions | |
For Repetition Group | * Component is participled… | Component is mixed… |
For Non-repetition Group | * Component is differenced… | Component is discovered… |
Table 1: Examples of stimuli: Complete sentences and simplified core structures. The upper half of the table displays examples of complete sentences (in the control group, the repeated anomalous sentence group,and the unrepeated anomalous sentence group, respectively) in the complete sentence part and their corresponding anomalous core structures to be used in the repetition part; the lower half of the table displays the anomalous core structures and their plausible filler short expressions in the repetition part.
2. Stimuli presentation
Figure 1: Schematic illustration of the stimulus presentation. The upper half of the figure displays the flowchart of presenting the repetition part and its corresponding follow-up complete anomalous sentence, the left side of the lower half displays the detailed manner of presenting each short expression, and the right side of the lower half displays the detailed manner of presenting each complete sentence. Please click here to view a larger version of this figure.
Figure 2: The organization of stimuli in each block. This figure displays the overall flowchart of programming for all anomalous complete sentences (with their corresponding repetition parts) and the correct, complete filler sentences (without any preceding repetition part) in each block. This figure is adopted from Huang et al.14 with permission. Please click here to view a larger version of this figure.
3. Experiment preparation and electrophysiological recording
The present protocol was used in one of our recent studies to investigate whether the N400 effect reflects semantic integration processing14. The stimuli used in that study were in Chinese, as shown in Table 2.
(a) Example of the simplified core structures in the repetition part | ||
Im... |
Experimental results and significance
In the repetition part, the results demonstrated that the N400 effect became smaller and smaller until almost non-existent. The greatly attenuated N400 effect proved that multiple repetitions did significantly modulate the amplitude of N400. However, the results in this part cannot show whether N400 was actually affected by the change of expectancy or semantic integration. The attenuated N400 effect can still be explained differently. One explanation is that ex...
There are no competing financial interests.
This work was supported by the National Natural Science Foundation of China [61433015], National Social Science Major Fund of China[14ZDB154; 15ZDB017], and the MOE (Ministry of Education in China) Project of Humanities and Social Sciences [14YJC740104]. We express great gratitude to the two anonymous reviewers for their valuable suggestions.
Name | Company | Catalog Number | Comments |
BrainAmp DC amplifier system (Brain Products GmbH) | Brain Products, Gilching, Germany | BrainAmp S/N AMP13061964DC Input 5.6DC=150mA Operation 7mA Standby | |
Easycap (Brain Products GmbH) | Brain Products, Gilching, Germany | 62 Ag/AgCl electrodes with a configuration of the international 10–20 system of electrode |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved