Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a protocol for evaluating the functional synaptic multiplicity using whole-cell patch clamp electrophysiology in acute brain slices.

Abstract

In the central nervous system, a pair of neurons often form multiple synaptic contacts and/or functional neurotransmitter release sites (synaptic multiplicity). Synaptic multiplicity is plastic and changes throughout development and in different physiological conditions, being an important determinant for the efficacy of synaptic transmission. Here, we outline experiments for estimating the degree of multiplicity of synapses terminating onto a given postsynaptic neuron using whole-cell patch clamp electrophysiology in acute brain slices. Specifically, voltage-clamp recording is used to compare the difference between the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) and miniature excitatory postsynaptic currents (mEPSCs). The theory behind this method is that afferent inputs that exhibit multiplicity will show large, action potential-dependent sEPSCs due to the synchronous release that occurs at each synaptic contact. In contrast, action potential-independent release (which is asynchronous) will generate smaller amplitude mEPSCs. This article outlines a set of experiments and analyses to characterize the existence of synaptic multiplicity and discusses the requirements and limitations of the technique. This technique can be applied to investigate how different behavioral, pharmacological or environmental interventions in vivo affect the organization of synaptic contacts in different brain areas.

Introduction

Synaptic transmission is a fundamental mechanism for communication between neurons, and hence, brain function. Synaptic transmission is also labile and can change its efficacy in an activity-dependent manner as well as in response to modulatory signals1. Thus, examining synaptic function has been a key focus of neuroscience research. Whole-cell patch clamp electrophysiology is a versatile technique that enables us to understand, by devising experimental designs and data analyses, in-depth biophysical and molecular mechanisms of synaptic transmission. A commonly used approach, perhaps owing to the simplicity of the technique and concept, is....

Protocol

All animal experiments are approved by the Animal Care Committee of The University of Western Ontario in accordance with the Canadian Council on Animal Care Guidelines (AUP#2014-031).

1. Solutions

  1. Slicing solution
    1. Refer to Table 1 for the composition of the slicing solution.
    2. Prepare a 20x stock solution in advance and store it at 4 °C for up to 1 month.
    3. For 1x slicing solution, dissolve NaHCO3, glu.......

Representative Results

The above protocol describes a method for using whole-cell patch clamp electrophysiology to examine the degree of synaptic multiplicity, using mouse hypothalamic neurons as an example. This slice preparation technique should yield healthy viable cells that do not have a swollen membrane or nucleus (Figure 1). Each step in the protocol is important for the health of the tissue and quality of the recordings.

Discussion

One important requirement for a successful patch clamp electrophysiology experiment is obtaining healthy slices/cells. Our described protocol is optimized for hypothalamic slices that contain PVN neurons. Other brain areas may require modified solutions and slicing methods21,22,23,24. For the recording, it is critical to only accept stable recordings by constantly monitoring cell properties suc.......

Acknowledgements

J.S. received Ontario Graduate Scholarship. W.I. received a New Investigator Fellowship from Mental Health Research Canada. This work is supported by operating grants to W.I from the Natural Sciences and Engineering Research Council of Canada (06106-2015 RGPIN) and the Canadian Institute for Health Research (PJT 148707).

....

Materials

NameCompanyCatalog NumberComments
1 ml syringeBD309659
10 bladeFisher Scientific/others35698
22 bladeVWR/others21909-626
22 uM syringe filtersMilipore09-719-000
Adson forecepsHarvard Instruments72-8547
Angled sharp scissorsHarvard Instruments72-8437
ClampexMolecular DevicespClamp 10
Double edge bladeVWR74-0002
Filter paperSigma/others1001090
Fine paintbrushFisher/various15-183-35/various
Gas Dispersion TubeVWRLG-8680-120
IsofluraneFresenius Kabi/othersM60303
Krazy gluevariousvarious
Mini analysisSynaptosoftMiniAnalysis 6
OsmomoterWescor IncModel 5600
ParafilmSigmaPM-996
Pasteur pipetteVWR14672-200
ph meterMettler ToledoFE20-ATC
Rubber bulbVWR82024-550
Scalpel handle No. 3Harvard Instruments72-8350
Scalpel handle No. 4Harvard Instruments72-8356
Single edge bladeVWR55411-050
Vibratome slicerLeicaVT1200S
Water Purification SystemMilliporeMilli-Q Academic A10
Well plate lidFisher/various07-201-590/various
Chemicals/reagents
4-APSigma275875
BAPTAmolecular probesB1204
CaCl2*2H2OSigmaC7902
CdCl2sigma202908
DNQXTocris189
EGTASigmaE3889
glucoseSigmaG5767
HEPESSigmaH3375
K2-ATPSigmaA8937
KClSigmaP9333
K-gluconateSigmaG4500
MgCl2*6H2OSigmaM2670
Molecular biology grade waterSigmaW4502-1L
Na3GTPSigmaG8877
NaClBioshopSOD001.1
Na-gluconateSigmaS2054
NaH2PO4Sigma71504
NaHCO3SigmaS6014
PicrotoxinsigmaP1675
SrClSigma255521
sucroseBioshopSUC507.1
TTXAlamone LabsT-550
yDGGTocris6729-55-1

References

  1. Abbott, L. F., Nelson, S. B. Synaptic plasticity: taming the beast. Nature Neuroscience. 3 (Supp), 1178-1183 (2000).
  2. Hsia, A. Y., Malenka, R. C., Nicoll, R. A. Development of Excitatory Circuitry in the Hippocampus. Journal o....

Explore More Articles

Synaptic MultiplicityWhole cell Patch clamp ElectrophysiologyAction PotentialNeurotransmitter ReleasePostsynaptic CurrentTTXCadmiumEPSCLow calcium ACSF

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved