A subscription to JoVE is required to view this content. Sign in or start your free trial.
In this study, we modify carbon-fiber microelectrodes with gold nanoparticles to enhance the sensitivity of neurotransmitter detection.
For over 30 years, carbon-fiber microelectrodes (CFMEs) have been the standard for neurotransmitter detection. Generally, carbon fibers are aspirated into glass capillaries, pulled to a fine taper, and then sealed using an epoxy to create electrode materials that are used for fast scan cyclic voltammetry testing. The use of bare CFMEs has several limitations, though. First and foremost, the carbon fiber contains mostly basal plane carbon, which has a relatively low surface area and yields lower sensitivities than other nanomaterials. Furthermore, the graphitic carbon is limited by its temporal resolution, and its relatively low conductivity. Lastly, neurochemicals and macromolecules have been known to foul at the surface of carbon electrodes where they form non-conductive polymers that block further neurotransmitter adsorption. For this study, we modify CFMEs with gold nanoparticles to enhance neurochemical testing with fast scan cyclic voltammetry. Au3+ was electrodeposited or dipcoated from a colloidal solution onto the surface of CFMEs. Since gold is a stable and relatively inert metal, it is an ideal electrode material for analytical measurements of neurochemicals. Gold nanoparticle modified (AuNP-CFMEs) had a stability to dopamine response for over 4 h. Moreover, AuNP-CFMEs exhibit an increased sensitivity (higher peak oxidative current of the cyclic voltammograms) and faster electron transfer kinetics (lower ΔEP or peak separation) than bare unmodified CFMEs. The development of AuNP-CFMEs provides the creation of novel electrochemical sensors for detecting fast changes in dopamine concentration and other neurochemicals at lower limits of detection. This work has vast applications for the enhancement of neurochemical measurements. The generation of gold nanoparticle modified CFMEs will be vitally important for the development of novel electrode sensors to detect neurotransmitters in vivo in rodent and other models to study neurochemical effects of drug abuse, depression, stroke, ischemia, and other behavioral and disease states.
Carbon-fiber microelectrodes (CFMEs)1 are best used as biosensors to detect the oxidation of several crucial neurotransmitters2, including dopamine3, norepinephrine4, serotonin5, adenosine6, histamine7, and others8. The biocompatibility and size of carbon fibers make them optimal for implantation as there is mitigated tissue damage compared to larger standard electrodes.9 CFMEs are known to possess useful electrochemical properties and are capable of makin....
1. Construction of carbon-fiber microelectrodes
For Figure 1, we show a schematic where FSCV testing is utilized to measure the concentration of neurotransmitters in vitro. Figure 1 displays the dopamine waveform applied. The triangle waveform scans from -0.4 V to 1.3 V at 400 V/s. In the second part of the figure to the left, it displays the oxidation of dopamine to dopamine-ortho-quinone (DOQ), a two electron transfer process occurs from the surface of the analyte to the sur.......
In this study, we demonstrate a novel method to construct gold-nanoparticle modified carbon fiber microelectrodes for the detection of neurotransmitters such as dopamine using fast scan cyclic voltammetry. The method is an efficient, green, and relatively inexpensive approach to enhancing the sensitivity of biomolecule detection. The thickness of gold deposited onto the surface of the carbon fiber can be controlled by the time of electrodeposition and the concentration of gold present in the electrodeposition solution. G.......
We would like to thank American University, the Faculty Research Support Grant, NASA DC Space Grant, and NSF-MRI#1625977.
....Name | Company | Catalog Number | Comments |
Dopamine hydrochloride | Sigma Aldrich | H8502-5G | |
Phosphate Buffered Saline | Sigma Aldrich | P5493-1L | |
Pine WaveNeuro Potentiostat | Pine Instruments | NEC-WN-BASIC | This orders comes in bulk with all other accessories such as headstages, adapters, cords, and other electronics |
Pine Flow Cell and Micromanipulator | Pine Instruments | NEC-FLOW-1 | This is also another bulk order including the micromanipulator, flow cell, knobs, tubing, connectors, etc. |
Glass-Capillary | A-M Systems | 602500 | |
T-650 Carbon Fiber | Goodfellow | C 005711 | |
Epon 828 Epoxy | Miller-Stephenson | EPON 828 TDS | |
Diethelynetriamine | Sigma Aldrich | D93856-5ML | |
Gold (III) chloride | Sigma Aldrich | 254169 | Comes as either HAuCl4 or AuCl3 |
pH meter | Fisher | S90528 | |
Farraday Cage | AMETEK TMC | 81-334-03 | |
Syringe Pump | NEW ERA PUMP | NE-1000 | |
Eppendorf Pipettes and Tips | Eppendorf | 2231000222 | This is also a bulk order containing multiple pipettes and tips |
10 -1,000 mL beakers | VWR | 10536-390 | |
Carbon fiber | Goodfellow | C 005711 | |
SEM | JEOL | JSM-IT100 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved