Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We describe two methods for assessing transient vascular permeability associated with tumor microenvironment of metastasis (TMEM) doorway function and cancer cell intravasation using intravenous injection of high-molecular weight (155 kDa) dextran in mice. The methods include intravital imaging in live animals and fixed tissue analysis using immunofluorescence.

Abstract

The most common cause of cancer related mortality is metastasis, a process that requires dissemination of cancer cells from the primary tumor to secondary sites. Recently, we established that cancer cell dissemination in primary breast cancer and at metastatic sites in the lung occurs only at doorways called Tumor MicroEnvironment of Metastasis (TMEM). TMEM doorway number is prognostic for distant recurrence of metastatic disease in breast cancer patients. TMEM doorways are composed of a cancer cell which over-expresses the actin regulatory protein Mena in direct contact with a perivascular, proangiogenic macrophage which expresses high levels of TIE2 and VEGF, where both of these cells are tightly bound to a blood vessel endothelial cell. Cancer cells can intravasate through TMEM doorways due to transient vascular permeability orchestrated by the joint activity of the TMEM-associated macrophage and the TMEM-associated Mena-expressing cancer cell. In this manuscript, we describe two methods for assessment of TMEM-mediated transient vascular permeability: intravital imaging and fixed tissue immunofluorescence. Although both methods have their advantages and disadvantages, combining the two may provide the most complete analyses of TMEM-mediated vascular permeability as well as microenvironmental prerequisites for TMEM function. Since the metastatic process in breast cancer, and possibly other types of cancer, involves cancer cell dissemination via TMEM doorways, it is essential to employ well established methods for the analysis of the TMEM doorway activity. The two methods described here provide a comprehensive approach to the analysis of TMEM doorway activity, either in naïve or pharmacologically treated animals, which is of paramount importance for pre-clinical trials of agents that prevent cancer cell dissemination via TMEM.

Introduction

Recent advances in our understanding of cancer metastasis have uncovered that epithelial-to-mesenchymal transition (EMT) and the induction of a migratory/invasive cancer cell subpopulation are not, by themselves, sufficient for hematogenous dissemination1. Indeed, it was previously thought that metastasizing cancer cells intravasate through the entirety of cancer-associated endothelium as the tumor neovasculature is often characterized by low pericyte coverage, and as such, is highly permeable and unstable2,3,4. Although highly suggestive of defective ....

Protocol

All experiments using live animals must be conducted in accordance with animal use and care guidelines and regulations. The procedures described in this study were carried out in accordance with the National Institutes of Health regulations concerning the care and use of experimental animals and with the approval of the Albert Einstein College of Medicine Animal Care and Use Committee (IACUC).

1. Evaluation of "bursting permeability" using live animal imaging

  1. T.......

Representative Results

The experimental procedures described in this protocol article are briefly summarized and illustrated in Figure 1A-C.

To measure TMEM-mediated vascular permeability ("bursting activity") and to reduce experimental noise from other modes of vascular permeability (i.e. transcellular and paracellular, as explained in the introduction), we performed intravenous (i.v.) injection of high molecular weight probes, such as 155 kDa Dextran, conjugat.......

Discussion

Here, we outline two protocols that can be applied to visualize and quantify a specific type of vascular permeability which is present at TMEM doorways and is associated with the disruption of vascular tight and adherens junctions. This type of vascular permeability is transient and controlled by the tripartite TMEM cell complex, as explained above5. The ability to identify and quantify TMEM-associated vascular permeability is crucial for the assessment of a pro-metastatic cancer cell microenviron.......

Acknowledgements

We would like to thank the Analytical Imaging Facility (AIF) in the Albert Einstein College of Medicine for imaging support. This work was supported by grants from the NCI (P30CA013330, CA150344, CA 100324 and CA216248), the SIG 1S10OD019961-01, the Gruss-Lipper Biophotonics Center and its Integrated Imaging Program, and Montefiore’s Ruth L. Kirschstein T32 Training Grant of Surgeons for the Study of the Tumor Microenvironment (CA200561).

GSK co-wrote the manuscript, performed imaging for figure 1C and 3B, developed fixed tissue analysis protocol, and analy....

Materials

NameCompanyCatalog NumberComments
Anti-rabbit IgG (Alexa 488)Life Technologies CorporationA-11034
Anti-rat IgG (Alexa 647)Life Technologies CorporationA-21247
Bovine Serum AlbuminFisher ScientificBP1600-100
CitrateEng Scientific Inc9770
Cover Glass SlipsElectron Microscopy Sciences72296-08
Cyanoacrylate AdhesiveHenkel Adhesive1647358
DAPIPerkin ElmerFP1490
Dextran-Tetramethyl-RhodamineSigma AldrichT1287
DMEM/F12Gibco11320-033
Endomucin (primary antibody)Santa Cruz Biotechnologysc-65495
EnrofloxacinBayer84753076 v-06/2015
Fetal Bovine SerumSigma AldrichF2442
Fish Skin GelatinFisher ScientificG7765
Insulin SyringeBecton Dickinson309659
IsofluoraneHenry ScheinNDC 11695-6776-2
MatrigelCorningCB40234Artificial extracellular matrix
Needle (30 G)Becton Dickinson305128
Phosphate Buffered SalineLife Technologies CorporationPBS
Polyethylene TubingScientific Commodities IncBB31695-PE/1
Pulse OximeterKent ScientificMouseOx
Puralube Vet OintmentDechraNDC 17033-211-38
Quantum DotsLife Technologies CorporationQ21561MP
RubberMcMaster Carr1310N14
TMR (primary antibody)InvitrogenA6397
Tween-20MP BiologicalsTWEEN201
XyleneFisher Scientific184835

References

  1. Karagiannis, G. S., Goswami, S., Jones, J. G., Oktay, M. H., Condeelis, J. S. Signatures of breast cancer metastasis at a glance. Journal of Cell Science. 129 (9), 1751-1758 (2016).
  2. Hanahan, D., Weinberg, R. A. Hallmarks of cancer: the next generation.

Explore More Articles

Tumor MicroenvironmentTMEMVascular PermeabilityCancer Cell DisseminationIntravital ImagingFixed Tissue AnalysisDextranTumor TransplantationMacrophagesMammary Fat PadExtracellular MatrixTail Vein Catheter

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved