A subscription to JoVE is required to view this content. Sign in or start your free trial.
We describe two methods for assessing transient vascular permeability associated with tumor microenvironment of metastasis (TMEM) doorway function and cancer cell intravasation using intravenous injection of high-molecular weight (155 kDa) dextran in mice. The methods include intravital imaging in live animals and fixed tissue analysis using immunofluorescence.
The most common cause of cancer related mortality is metastasis, a process that requires dissemination of cancer cells from the primary tumor to secondary sites. Recently, we established that cancer cell dissemination in primary breast cancer and at metastatic sites in the lung occurs only at doorways called Tumor MicroEnvironment of Metastasis (TMEM). TMEM doorway number is prognostic for distant recurrence of metastatic disease in breast cancer patients. TMEM doorways are composed of a cancer cell which over-expresses the actin regulatory protein Mena in direct contact with a perivascular, proangiogenic macrophage which expresses high levels of TIE2 and VEGF, where both of these cells are tightly bound to a blood vessel endothelial cell. Cancer cells can intravasate through TMEM doorways due to transient vascular permeability orchestrated by the joint activity of the TMEM-associated macrophage and the TMEM-associated Mena-expressing cancer cell. In this manuscript, we describe two methods for assessment of TMEM-mediated transient vascular permeability: intravital imaging and fixed tissue immunofluorescence. Although both methods have their advantages and disadvantages, combining the two may provide the most complete analyses of TMEM-mediated vascular permeability as well as microenvironmental prerequisites for TMEM function. Since the metastatic process in breast cancer, and possibly other types of cancer, involves cancer cell dissemination via TMEM doorways, it is essential to employ well established methods for the analysis of the TMEM doorway activity. The two methods described here provide a comprehensive approach to the analysis of TMEM doorway activity, either in naïve or pharmacologically treated animals, which is of paramount importance for pre-clinical trials of agents that prevent cancer cell dissemination via TMEM.
Recent advances in our understanding of cancer metastasis have uncovered that epithelial-to-mesenchymal transition (EMT) and the induction of a migratory/invasive cancer cell subpopulation are not, by themselves, sufficient for hematogenous dissemination1. Indeed, it was previously thought that metastasizing cancer cells intravasate through the entirety of cancer-associated endothelium as the tumor neovasculature is often characterized by low pericyte coverage, and as such, is highly permeable and unstable2,3,4. Although highly suggestive of defective ....
All experiments using live animals must be conducted in accordance with animal use and care guidelines and regulations. The procedures described in this study were carried out in accordance with the National Institutes of Health regulations concerning the care and use of experimental animals and with the approval of the Albert Einstein College of Medicine Animal Care and Use Committee (IACUC).
1. Evaluation of "bursting permeability" using live animal imaging
The experimental procedures described in this protocol article are briefly summarized and illustrated in Figure 1A-C.
To measure TMEM-mediated vascular permeability ("bursting activity") and to reduce experimental noise from other modes of vascular permeability (i.e. transcellular and paracellular, as explained in the introduction), we performed intravenous (i.v.) injection of high molecular weight probes, such as 155 kDa Dextran, conjugat.......
Here, we outline two protocols that can be applied to visualize and quantify a specific type of vascular permeability which is present at TMEM doorways and is associated with the disruption of vascular tight and adherens junctions. This type of vascular permeability is transient and controlled by the tripartite TMEM cell complex, as explained above5. The ability to identify and quantify TMEM-associated vascular permeability is crucial for the assessment of a pro-metastatic cancer cell microenviron.......
We would like to thank the Analytical Imaging Facility (AIF) in the Albert Einstein College of Medicine for imaging support. This work was supported by grants from the NCI (P30CA013330, CA150344, CA 100324 and CA216248), the SIG 1S10OD019961-01, the Gruss-Lipper Biophotonics Center and its Integrated Imaging Program, and Montefiore’s Ruth L. Kirschstein T32 Training Grant of Surgeons for the Study of the Tumor Microenvironment (CA200561).
GSK co-wrote the manuscript, performed imaging for figure 1C and 3B, developed fixed tissue analysis protocol, and analy....
Name | Company | Catalog Number | Comments |
Anti-rabbit IgG (Alexa 488) | Life Technologies Corporation | A-11034 | |
Anti-rat IgG (Alexa 647) | Life Technologies Corporation | A-21247 | |
Bovine Serum Albumin | Fisher Scientific | BP1600-100 | |
Citrate | Eng Scientific Inc | 9770 | |
Cover Glass Slips | Electron Microscopy Sciences | 72296-08 | |
Cyanoacrylate Adhesive | Henkel Adhesive | 1647358 | |
DAPI | Perkin Elmer | FP1490 | |
Dextran-Tetramethyl-Rhodamine | Sigma Aldrich | T1287 | |
DMEM/F12 | Gibco | 11320-033 | |
Endomucin (primary antibody) | Santa Cruz Biotechnology | sc-65495 | |
Enrofloxacin | Bayer | 84753076 v-06/2015 | |
Fetal Bovine Serum | Sigma Aldrich | F2442 | |
Fish Skin Gelatin | Fisher Scientific | G7765 | |
Insulin Syringe | Becton Dickinson | 309659 | |
Isofluorane | Henry Schein | NDC 11695-6776-2 | |
Matrigel | Corning | CB40234 | Artificial extracellular matrix |
Needle (30 G) | Becton Dickinson | 305128 | |
Phosphate Buffered Saline | Life Technologies Corporation | PBS | |
Polyethylene Tubing | Scientific Commodities Inc | BB31695-PE/1 | |
Pulse Oximeter | Kent Scientific | MouseOx | |
Puralube Vet Ointment | Dechra | NDC 17033-211-38 | |
Quantum Dots | Life Technologies Corporation | Q21561MP | |
Rubber | McMaster Carr | 1310N14 | |
TMR (primary antibody) | Invitrogen | A6397 | |
Tween-20 | MP Biologicals | TWEEN201 | |
Xylene | Fisher Scientific | 184835 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved