A subscription to JoVE is required to view this content. Sign in or start your free trial.
We show a method for necropsy and dissection of mouse prostate cancer models, focusing on prostate tumor dissection. A step-by-step protocol for generation of mouse prostate tumor organoids is also presented.
Methods based on homologous recombination to modify genes have significantly furthered biological research. Genetically engineered mouse models (GEMMs) are a rigorous method for studying mammalian development and disease. Our laboratory has developed several GEMMs of prostate cancer (PCa) that lack expression of one or multiple tumor suppressor genes using the site-specific Cre-loxP recombinase system and a prostate-specific promoter. In this article, we describe our method for necropsy of these PCa GEMMs, primarily focusing on dissection of mouse prostate tumors. New methods developed over the last decade have facilitated the culture of epithelial-derived cells to model organ systems in vitro in three dimensions. We also detail a 3D cell culture method to generate tumor organoids from mouse PCa GEMMs. Pre-clinical cancer research has been dominated by 2D cell culture and cell line-derived or patient-derived xenograft models. These methods lack tumor microenvironment, a limitation of using these techniques in pre-clinical studies. GEMMs are more physiologically-relevant for understanding tumorigenesis and cancer progression. Tumor organoid culture is an in vitro model system that recapitulates tumor architecture and cell lineage characteristics. In addition, 3D cell culture methods allow for growth of normal cells for comparison to tumor cell cultures, rarely possible using 2D cell culture techniques. In combination, use of GEMMs and 3D cell culture in pre-clinical studies has the potential to improve our understanding of cancer biology.
Since the late 1980s, the ability to alter genes by homologous recombination has greatly advanced the study of biological systems1. Inducible, tissue-, or cell-specific promotor systems and site-specific recombinases, such as Cre-loxP, has advanced genetic studies by facilitating control over genetic modifications both temporally and spatially2,3,4. The combination of these genetic strategies has created a wide array of experimental model systems5,6,7.
Animal procedures described here were performed with the approval of the Institutional Animal Care and Use Committee (IACUC) at the Department of Laboratory Animal Resources, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
NOTE: Male mice to be dissected to isolate prostates or prostate tumors for generation of organoids should have at least reached the age of sexual maturity — about 8-10 weeks of age. Specific ages of mice can vary amongst studies. Some fac.......
Representative necropsy images of a mouse with a large fluid-filled primary prostate tumor in the anterior prostate region are shown in Figure 2A. In contrast, Figure 2B, shows representative necropsy images of a mouse with a large solid primary prostate tumor for which individual prostate regions are indistinguishable. Fluorescent dissection images show the same solid prostate tumor from Figure 2
Critical steps within the protocol for prostate tumor dissection and organoid generation
Removal of non-prostate tissue and fine dissection of the mouse prostate tumor is crucial for the optimal generation of cancer organoids since both non-prostate epithelial cells and normal prostate epithelial cells will generate organoids. For solid prostate tumors specifically, it is crucial to isolate areas of viable tumor to remove contamination with necrotic tissue that would reduce the number of viable cel.......
The authors would like to thank the Calvin Kuo Laboratory at Stanford University for providing HEK293 cells stably transfected with either HA-mouse Noggin-Fc or HA-mouse Rspo1-Fc. We would also like to thank Dr. Dean Tang for allowing us access the fluorescent dissection microscope in his laboratory. This work was supported by CA179907 to D.W.G. from the National Cancer Institute. Shared resources at Roswell Park Comprehensive Cancer Center were supported by National Institutes of Health Cancer Center Support Grant CA016056.
....Name | Company | Catalog Number | Comments |
0.25 % Trypsin+2.21 mM EDTA | Sigma | 25-053 | |
1 1/4 in, 23 gauge, disposable syringe needles | Becton Dickinson | Z192430 | |
10 % neutral buffered formalin | Sigma | HT501128 | |
32 % paraformaldehyde | Electron Microscopy Services | 15714 | |
A83-01 | MedChemExpress | HY-10432 | |
Advanced DMEM/F12+++ | Gibco | 12634 | |
Analytical balance | Mettler Toledo | 30216623 | |
B27 (50X) | Gibco | 17504044 | |
Collagenase II | Gibco | 17101015 | |
Dissecting Board | Thermo-Fisher | 36-1 | |
EHS Sarcoma matrix, Pathclear Lot#19814A10 | Manufactured by Trevigen | Requistitioned from the National Cancer Institute at the Frederick National Laboratory | Holder of grants from the National Cancer Institute can request matrix |
HEPES (1M) | Sigma | 25-060 | |
human recombinant Epidermal growth factor (EGF) | PeproTech | AF-100-15 | |
L-glutamine (200 mM) | Sigma | 25-005 | |
N-Acetyl-L-Cysteine | Sigma | A9165 | |
Penicillin-Streptomycin | Sigma | P4333 | |
Precision balance | Mettler Toledo | 30216561 | |
Scalpel #23 | World Precision Instruments | 504176 | |
Scalpel Handle #7, 16 cm | World Precision Instruments | 500238 | |
Single-edge carbon razor blade | Fisherbrand | 12-640 | |
Stainless steel dissecting scissors, 10 cm, straight | World Precision Instruments | 14393 | |
Stainless steel Iris forceps, 10 cm, curved tip, serrated | World Precision Instruments | 15915 | |
Stainless steel Nugent utility forceps, straight tip, serrated | World Precision Instruments | 504489 | |
Y-276632 (Rock Inhibitor) | APExBIO | A3008 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved