A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
A compact pulsed laser diode-based desktop photoacoustic tomography (PLD-PAT) system is demonstrated for high-speed dynamic in vivo imaging of small animal cortical vasculature.
Photoacoustic (PA) tomography (PAT) imaging is an emerging biomedical imaging modality useful in various preclinical and clinical applications. Custom-made circular ring array-based transducers and conventional bulky Nd:YAG/OPO lasers inhibit translation of the PAT system to clinics. Ultra-compact pulsed laser diodes (PLDs) are currently being used as an alternative source of near-infrared excitation for PA imaging. High-speed dynamic in vivo imaging has been demonstrated using a compact PLD-based desktop PAT system (PLD-PAT). A visualized experimental protocol using the desktop PLD-PAT system is provided in this work for dynamic in vivo brain imaging. The protocol describes the desktop PLD-PAT system configuration, preparation of animal for brain vascular imaging, and procedure for dynamic visualization of indocyanine green (ICG) dye uptake and clearance process in rat cortical vasculature.
Photoacoustic computed tomography (PACT/PAT) is a promising non-invasive biomedical imaging modality combining rich optical contrast with high ultrasond resolution1,2,3,4,5. When a nanosecond pulsed laser deposits energy onto light absorbing chromophores present inside any biological tissue, local temperature increases leading to thermoelastic expansion and contraction of the tissue, resulting in generation of pressure waves. These pressure waves are known as ultrasound waves or photoacoustic (PA) waves, which can be detected by ultrasound transducers around the sample. The detected PA signals are reconstructed using various reconstruction algorithms6,7,8,9 to generate cross-sectional PA images. PA imaging provides structural and functional information from macroscopic organs to microscopic organelles due to the wavelength dependence of endogenous chromophores present inside the body10. PAT imaging has been successfully used for breast cancer detection1, sentinel lymph node imaging11, mapping of oxyhemoglobin (HbO2), deoxyhemoglobin (HbR), total hemoglobin concentration (HbT), oxygen saturation (SO2)12,13, tumor angiogenesis14, small animal whole body imaging15, and other applications.
Nd:YAG/OPO lasers are conventional excitation sources for first generation PAT systems that are widely used in photoacoustic community for small animal imaging and deep tissue imaging16. These lasers provide ~100 mJ energy pulses at low repetition rates of ~10-100 Hz. The PAT imaging systems using these costly and bulky lasers are not suitable for high-speed imaging with single-element ultrasound transducers (SUTs), due to the limited pulse repetition rate. This inhibits real-time monitoring of physiological changes occurring at high speeds inside the animal. Using array-based transducers like linear, semi-circular, circular, and volumetric arrays with Nd:YAG laser excitation, high-speed imaging is possible. However, these array transducers are expensive and provide lower sensitivities compared to SUTs; yet, the imaging speed is limited by the low repetition rate of the laser. State-of-the-art single-impulse PACT systems with customized full-ring array transducer obtain the PA data at 50 Hz frame rates17. These array transducers need complex back-end receiving electronics and signal amplifiers, making the overall system more expensive and difficult for clinical use.
Their compact size, lower cost requirements, and higher pulse repetition rate (order of KHz) make pulsed laser diodes (PLDs) more promising for real-time imaging. Due to these advantages, PLDs are actively used as an alternate excitation source in second generation PAT systems. PLD-based PAT systems have been demonstrated successfully for high-frame rate imaging using array transducers18, deep-tissue and brain imaging19,20,21, cardiovascular disease diagnosis22, and rheumatology diagnosis23. As SUTs are highly sensitive and less expensive compared to array transducers, they are still extensively used for PAT imaging. Fiber-based PLD system have been demonstrated for phantom imaging24. A portable PLD-PAT system has been demonstrated previously by mounting the PLD inside the PAT scanner25. With one SUT circular scanner, phantom imaging was performed during 3 s of scan time, and in vivo rat brain imaging was performed during a 5 s period using this PLD-PAT system19.
Furthermore, improvements have been made to this PLD-PAT system to make it more compact and create a desktop model using eight acoustic reflector-based single-element ultrasound transducers (SUTRs)26,27. Here, SUTs were placed in a vertical instead of horizontal direction with the aid of a 90° acoustic reflector28. This system can be employed for scan times of up to 0.5 s and ~3 cm deep in tissue imaging and in vivo small animal brain imaging. In this work, this desktop PLD-PAT system is used to provide the visual demonstration of experiments for in vivo brain imaging in small animals and for dynamic visualization of uptake and clearance process of Food and Drug Administration (FDA)-approved indocyanine green (ICG) dye in rat brains.
Access restricted. Please log in or start a trial to view this content.
All animal experiments were performed according to the guidelines and regulations approved by the Institutional Animal Care and Use Committee of Nanyang Technological University, Singapore (Animal Protocol Number ARF-SBS/NIE-A0331).
1. System description
2. Animal preparation for rat brain imaging
NOTE: Healthy female rats (see Table of Materials) were used to demonstrate the above described desktop PLD-PAT system for imaging small animal cortical vasculature.
3. Dynamic in vivo imaging of uptake and clearance process of ICG in rat brain
4.
NOTE: 1.25 mg of ICG powder was weighed using a micro-weighing machine and mixed with 5 mL of distilled water to obtain a concentration of 323 μM for the ICG solution.
5.
NOTE: A-lines acquired during a 0.5 s scan time are used to generate one cross-sectional image. There is time gap of ~0.4–0.6 s between each scan.
Figure 1: Schematic of the desktop PLD-PAT system. (A) Schematic of the desktop PLD-PAT set up. PLD: pulsed laser diode, OD: optical diffuser, SUTR: acoustic reflector based single-element ultrasound transducer, AM: anesthesia machine, CSP: circular scanning plate, SM: stepper motor, LDU: laser driving unit, AMP: amplifier, DAQ: data acquisition card. (B) Circular arrangement of eight SUTRs around the scanning center. Please click here to view a larger version of this figure.
Access restricted. Please log in or start a trial to view this content.
The potentiality of the described desktop PLD-PAT system for dynamic in vivo brain imaging has been showcased in this protocol with corresponding results. High-speed imaging capability of the desktop PLD-PAT system was demonstrated by performing in vivo brain imaging of healthy female rats. PA signals were collected using eight SUTRs rotating in 360° and 45° around the rat brain at scan speeds of 4 s and 0.5 s, respectively. Figure 2A,B show brain images of a fe...
Access restricted. Please log in or start a trial to view this content.
This work presents a protocol to use a desktop PLD-PAT system for conducting experiments on small animals like rats for in vivo brain imaging and dynamic fast-uptake and clearance process of contrast agents like ICG. Bulky, expensive OPO-PAT systems take several minutes (2-5 min) to acquire a single cross-sectional in vivo image. A compact, low-cost, first generation portable PLD-PAT system provides single cross-sectional in vivo images in 5 s. In contrast, a high-speed, compact, low-cost desktop PLD-PAT system renders a...
Access restricted. Please log in or start a trial to view this content.
The authors have no relevant financial interests or potential conflicts of interest to disclose.
The research is supported by the Singapore Ministry of Health’s National Medical Research Council (NMRC/OFIRG/0005/2016: M4062012). The authors would like to thank Mr. Chow Wai Hoong Bobby for the machine shop support.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
12 V power supply | Voltcraft | PPS-11810 | To supply operating voltage for PLD |
Acoustic reflector | Olympus | F102 | 45 degree reflector augmented to the ultrasound transducer |
Acrylic water tank | NTU workshop | Custom-made | It is used to hold water that acts as an acoustic coupling medium between animal brain and detector |
Anesthetic Machine | Medical plus pte ltd | Non-Rebreathing Anaesthesia machine with oxygen concentrator. | Supplies oxygen and isoflurane to animal |
Animal distributor | In Vivos Pte Ltd, Singapore | Animal distributor that supplies small animals for research purpose | |
Animal holder | NTU workshop | Custom-made | Used for holding animal on its abdomen |
Breathing mask | NTU workshop | Custom-made | Used along with animal holder to supply anesthesia mixture to the animal |
Circular Scanner | NTU workshop | Custom-made | Scanner is made out of aluminum |
DAQ (Data acquisition) Card | Spectrum | M2i.4932-exp | 16 bit, 30 Ms/s, 8 channels, 1 Gs, PCIe |
Data acqusition software | National Instruments Corporation,Austin,TX,USA) | NI LabVIEW 2015 SP1 (32 bit) | LabVIEW based program developed in our laboratory for controlling the stepper motor and acquring the PA singnals from the detector |
Data processing software | Matlab (Mathworks, Natick, MA, USA) | Matlab R2015b | Matlab code developed in our laboratory for reconstructing cross-sectional PA images |
Function generator | RIGOL | DG1022 | To change the repetition rate of the PLD. It will provide TTL signal to synchronize the DAQ with the laser excitation. |
Low noise signal amplifier | Genetron | Custom-made using Mini-circuits, ZFL-500LN-BNC | To receive, and amplify the PA signal from SUTR. Its gain is 24 dB. |
Optical diffuser | Thorlabs | DG-120 | Used to to make the laser beam homogeneous |
Pulsed laser diode | Quantel, France | QD-Q1924-ILO-WATER | It is the excitation laser source with specifications of 816 nm wavelength, 3.4 mJ per pulse energy, 107 ns pulse width, 2 KHz maximum pulse repitition rate, dimensions : 13.0 x 7.6 x 5.0 cm |
Rats | In Vivos Pte Ltd, Singapore | NTac:SD, Sprague Dawley / SD | Female, weight 100±10g, strain of rats: Sprague Dawley, age: 4-5 weeks |
Stepper motor with gearbox | LIN Engineering (Servo Dynamics) | Motor: CO-5718L-01P-RO, Gearbox: DPL64/1; Power supply PW-100-24 | To move the detector holder in a circular geometry. Torque: 2.08 N-m, Rotor inertia: 2.6 kg-cm2 |
Ultrasound gel | Progress/parker acquasonic gel | PA-GEL-CLEA-5000 | Clear ultrasound gel |
Ultrasound Transducer | Olympus | V309-SU/ U8423013 | Ultrasonic sensors used for photoacoustic detection. Central freqency 5 MHz, 0.5 in |
Variable high voltage power supply | Elektro-Automatik | EA-PS 8160-04 T | To change the laser output power |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved