A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Uterine contractions are important for the well-being of females. However, pathologically increased contractility may result in dysmenorrhea, especially in younger females. Here, we describe a simple ex vivo preparation allowing quick assessment of the efficacy of smooth muscle relaxants that may be used for treating dysmenorrhea.
Dysmenorrhea, or painful cramping, is the most common symptom associated with menses in females and its severity can hinder women's everyday lives. Here, we present an easy and inexpensive method that would be instrumental for testing new drugs decreasing uterine contractility. This method utilizes the unique ability of the entire mouse reproductive tract to exhibit spontaneous motility when maintained ex vivo in a Petri dish containing oxygenated Krebs buffer. This spontaneous motility resembles the wave-like myometrial activity of the human uterus, referred to as endometrial waves. To demonstrate the effectiveness of the method, we employed a well-known uterine relaxant drug, epinephrine. We demonstrate that the spontaneous motility of the entire mouse reproductive tract can be quickly and reversibly inhibited by 1 µM epinephrine in this Petri dish model. Documenting the changes of uterine motility can be easily done using an ordinary smart phone or a sophisticated digital camera. We developed a MATLAB-based algorithm allowing motion tracking to quantify spontaneous uterine motility changes by measuring the rate of uterine horn movements. A major advantage of this ex vivo approach is that the reproductive tract remains intact throughout the entire experiment, preserving all intrinsic intrauterine cellular interactions. The major limitation of this approach is that up to 10-20% of uteri may exhibit no spontaneous motility. Thus far, this is the first quantitative ex vivo method for assessing spontaneous uterine motility in a Petri dish model.
As a major female organ, the uterus is crucial for reproduction and essential for the nourishment of the fetus1. The uterus consists of three layers: the perimetrium, myometrium and endometrium. The myometrium is the major contractile layer of the uterus and plays a key role in fetus delivery. The endometrium is the innermost layer lining the uterine cavity and is essential for embryo implantation. In non-pregnant females of reproductive age, the endometrial layer is shed monthly at the beginning of the menstrual cycle. The myometrium aids in this shedding process by maintaining the spontaneous myometrial contractions needed for clearing the necrotic endometrial tissue from the uterus1.
Unfortunately, increased myometrial contractility can result in negative side effects such as dysmenorrhea, or painful menstrual cramps. This is especially seen in young females and nulliparous women2. However, dysmenorrhea is different for every woman and depends on the strength of their myometrial contractions; stronger contractions are often associated with the sensation of severe cramping3. Myometrial contractility can be visualized using uterine ultrasound and is often recognized as endometrial waves. Enhanced release of prostaglandins during menstruation4 in a uterus undergoing endometrial sloughing is believed to contribute to increased myometrial hypercontractility, resulting in ischemia and hypoxia of the uterine muscle and thus increased pain3.
Severe dysmenorrhea can hinder the day-to-day activity of some women and 3 to 33% of women have very severe pain, which could cause a woman to be bedridden for 1 to 3 days each menstrual cycle5. Dysmenorrhea is the leading cause of gynecological morbidity in women of reproductive age regardless of age, nationality, and economic status5. The estimated prevalence of dysmenorrhea is both high and variable, ranging from 45% to 93% in women of reproductive age5. Dysmenorrhea-associated pain has an effect on the daily life of women and may result in poor academic performance in adolescents, lower quality of sleep, restriction of daily activities, and mood changes5.
Many women who experience severe dysmenorrhea resort to over-the-counter medications to relieve their pain. Such over-the-counter medications contain cyclooxygenase (COX) inhibitors which prevent the formation of prostaglandins6. However, COX inhibitors are associated with adverse cardiovascular events, and about 18% of women with dysmenorrhea are unresponsive to these inhibitors7. Therefore, there is a need for new medications to reduce menstrual cramps. Since over contractility of the uterus contributes to the pathogenesis of dysmenorrhea, one possible strategy may be the usage of uterine relaxants.
It is beneficial to quantify the effects of potential relaxant drugs in a model of naturally occurring spontaneous myometrial wave-like contractions. However, thus far, no efficient ex vivo method for testing muscle-relaxing drugs in the intact uterus has been described. Currently, isometric tension measurements are used to evaluate relaxant drug effects. During such measurements, a uterine muscle strip is maintained at a constant length under preload in a tissue bath while the force of uterine muscle contractions is recorded before and after oxytocin stimulation in the presence or absence of a relaxant drug. Although this approach is very useful, it requires expensive equipment. Furthermore, isometric contractions do not resemble the spontaneous myometrial wave-like contractions that naturally occur in the intact uterus. Uniquely, the uterine myometrial waves in rodents can be visualized as uterine horn motility when the entire reproductive tract (ovaries, oviducts, uterus, and vagina) is maintained in a buffer solution. Here, we present an ex vivo method for monitoring the spontaneous motility of the intact mouse uterus placed in a Petri dish containing oxygenated Krebs buffer. We also describe a motility quantification algorithm utilizing the MATLAB motion tracker. This novel approach provides an easy and less expensive alternative to test the relaxant potential of naturally occurring remedies and synthetic compounds.
All procedures with animals have been approved by the Institutional Animal Care and Use Committee at the Indiana University School of Medicine (Indianapolis, IN). 2-5 month-old F2-129S-C57BL/6 sexually-mature female mice were used in the study.
CAUTION: Ensure safety by wearing a lab coat, mask, and gloves when working with animals and biohazardous materials.
1. Solution Preparation
2. Animal Preparation
3. Determination of Estrous Cycle Stage
4. Mouse Reproductive Tract Ddissection
5. Tissue Imaging
6. Data Analysis
Figure 1 shows representative images taken during the entire reproductive tract isolation procedure that is described in this protocol. To avoid contaminating the buffer with fur, which would decrease video quality, we moistened the mouse body with 70% ethanol. The major benchmark for the dissection section of the protocol is to find the urinary bladder. The uterus and vagina will be located inferior to the urinary bladder.
To test the protocol, we treated the ent...
Here, we described a method for assessing spontaneous contractility of the entire rodent reproductive tract, which includes the ovaries, oviducts, uterine horns, and the vagina. We used a similar method to demonstrate the relaxant effect of phenylephrine on spontaneous uterine motility13, however, in the past we were unable to provide quantitative analysis of the data. In this work, we developed an algorithm for quantitative motility data analysis using the MATLAB motion tracking module. This is a...
The authors have nothing to disclose.
This work was supported by internal IU funds. AGO conceived the study. XC and AGO were involved in the design of the described experiments. FL and AGO analyzed and interpreted the data. KLL, JOB, FL performed all of the ex vivo experiments. FL wrote the MATLAB script. KLL, JOB, and AGO wrote the manuscript. All authors read and approved the final version of the manuscript.
Name | Company | Catalog Number | Comments |
Epinephrine hydrochloride | Sigma-Aldrich | E4642 | |
Dulbecco's PBS | Fisher Sceintific | 17-512Q | |
Ethanol 200 PROOF | Decon Laboratories | 2701 | |
NaCl | Sigma-Aldrich | S7653 | |
Glucose | Sigma-Aldrich | G7528 | |
KCl | Sigma-Aldrich | P9333 | |
CaCl2 · 2H2O | Sigma-Aldrich | C5080 | |
NaH2PO4 | Sigma-Aldrich | S0751 | |
MgCl2 · 6H2O | Sigma-Aldrich | M9272 | |
NaHCO3 | Sigma-Aldrich | S6297 | |
Isoflurane, USP | Patterson Veterinary | 07-893-2374 | |
Dissecting Extra-Fine-Pointed Precision Splinter Forceps | Fisher Sceintific | 13-812-42 | |
Curved Hardened Fine Iris Scissors | Fine Science Tools | 14091-09 | |
Dissection High-performance Modular Stereomicroscope | Leica | MZ6 | |
Digital 5 Megapixel Color Microscope Camera with active cooling system | Leica | DFC425 C | |
Stereomaster Microscope Fiber-Optic Light Sources | Fisher Sceintific | 12-562-21 | |
Weigh Boat | Fisher Sceintific | WB30304 | |
Convertors Astound Standard Surgical Gown | Cardinal Health | 9515 | Small, Medium or Large |
Gloves | McKesson Corporation | 20-1080 | Small, Medium, or Large; powder-free sterile latex or nitrile surgical gloves |
Petri Dish | Corning Falcon | 351029 | 100 mm |
Petri Dish | Corning Falcon | 353001 | 35 mm |
95% O2- 5% CO2 gas mixture | Praxair | MM OXCD5-K | |
Ear-loop Masks | Valumax International | 5430E-PP | |
DSLR 24.2 MP Camera | Canon | EOS Rebel T6i | |
MATLAB | MathWorks | N/A | version 2019 or later |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved