Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This article presents an experimental/analytic framework to study human postural control. The protocol provides step-by-step procedures for performing standing experiments, measuring body kinematics and kinetics signals, and analyzing the results to provide insight into the mechanisms underlying human postural control.

Abstract

Many components of the nervous and musculoskeletal systems act in concert to achieve the stable, upright human posture. Controlled experiments accompanied by appropriate mathematical methods are needed to understand the role of the different sub-systems involved in human postural control. This article describes a protocol for performing perturbed standing experiments, acquiring experimental data, and carrying out the subsequent mathematical analysis, with the aim of understanding the role of musculoskeletal system and central control in human upright posture. The results generated by these methods are important, because they provide insight into the healthy balance control, form the basis for understanding the etiology of impaired balance in patients and the elderly, and aid in the design of interventions to improve postural control and stability. These methods can be used to study the role of somatosensory system, intrinsic stiffness of ankle joint, and visual system in postural control, and may also be extended to investigate the role of vestibular system. The methods are to be used in the case of an ankle strategy, where the body moves primarily about the ankle joint and is considered a single-link inverted pendulum.

Introduction

Human postural control is realized through complex interactions between the central nervous and musculoskeletal systems1. The human body in standing is inherently unstable, subject to a variety of internal (e.g., respiration, heartbeat) and external (e.g., gravity) perturbations. Stability is achieved by a distributed controller with central, reflex, and intrinsic components (Figure 1).

Postural control is achieved by: an active controller, mediated by the central nervous system (CNS) and spinal cord, which changes muscle activation; and an intrinsic stiffness controller that resists joi....

Protocol

All experimental methods have been approved by the McGill University Research Ethics Board and subjects sign informed consents before participating.

1. Experiments

NOTE: Each experiment involves the following steps.

  1. Pre-test
    1. Prepare a definite outline of all trials to be performed and make a checklist for data collection.
    2. Provide the subject with a consent form with all the necessary information, ask them to read it thoroughly, ans.......

Representative Results

Pseudo random ternary sequence (PRTS) and TrapZ signals

Figure 2A shows a PRTS signal, which is generated by integrating a pseudo random velocity profile. For each sample time figure-representative results-342, the signal velocity may be equal to zero, or acquire a pre-defined positive or negative value,

Discussion

Several steps are critical in performing these experiments to study human postural control. These steps are associated with the correct measurement of the signals and include: 1) Correct alignment of the shank ankle axis of rotation to that of the pedals, for the correct measurement of ankle torques. 2) Correct set-up of the range finders to ensure they work in their range and are not saturated during the experiments. 3) Measurement of EMG with good quality and minimal cross talk. 4) Application of appropriate perturbati.......

Acknowledgements

This article was made possible by NPRP grant #6-463-2-189 from the Qatar National Research and MOP grant #81280 from the Canadian Institutes of Health Research.

....

Materials

NameCompanyCatalog NumberComments
5K potentiometerMaurey112P19502Measures actuator shaft angle
8 channel Bagnoli surface EMG amplifiers and electrodesDelsysMeasures the EMG of ankle muscles
AlienWare LaptopDell Inc.P69F001-Rev. A02VR-ready PC laptop
Data acquisition cardNational instruments4472Samples the analogue signals from the sensors
Directional valveREXROTH4WMR10C3XBypasses the flow if the angle of actuator shaft goes beyond ±20°
Full body harnessJelco740Protect the subjects from falling
Laser range finderMicro-epsilon 1302-1001507307Measures shank linear displacement
Laser range finderMicro-epsilon 1302-2001509074Measures body linear displacement
Load cellOmegaLC302-100Measures vertical reaction forces
Proportional servo-valveMOOGD681-4718Controls the hydraulic flow to the rotary actuators
Rotary actuatorRotac26R21VDEISFTFLGMTGApplies mechanical perturbations
Torque transducerLebow2110-5kMeasures ankle torque
Virtual Environment Motion TrackersHTC inc.1551984681Tracks the head motion
Virtual Reality HeadsetHTC inc.1551984681Provides visual perturbations

References

  1. Horak, F. B. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls?. Age and Ageing. 35, 7-11 (2006).
  2. Morasso, P. G., Schieppati, M.

Explore More Articles

Postural ControlExperimental MethodsCentral Nervous SystemMusculoskeletal SystemSensory SystemsBalance ControlElectromyographyKinematic MeasurementReflective MarkersStanding Apparatus

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved