A subscription to JoVE is required to view this content. Sign in or start your free trial.
This work describes a semi-high-throughput protocol that allows simultaneous 3D time-lapse imaging of embryogenesis in 80–100 C. elegans embryos in a single overnight run. Additionally, image processing and visualization tools are included to streamline data analysis. The combination of these methods with custom reporter strains enables detailed monitoring of embryogenesis.
C. elegans is the premier system for the systematic analysis of cell fate specification and morphogenetic events during embryonic development. One challenge is that embryogenesis dynamically unfolds over a period of about 13 h; this half day-long timescale has constrained the scope of experiments by limiting the number of embryos that can be imaged. Here, we describe a semi-high-throughput protocol that allows for the simultaneous 3D time-lapse imaging of development in 80–100 embryos at moderate time resolution, from up to 14 different conditions, in a single overnight run. The protocol is straightforward and can be implemented by any laboratory with access to a microscope with point visiting capacity. The utility of this protocol is demonstrated by using it to image two custom-built strains expressing fluorescent markers optimized to visualize key aspects of germ-layer specification and morphogenesis. To analyze the data, a custom program that crops individual embryos out of a broader field of view in all channels, z-steps, and timepoints and saves the sequences for each embryo into a separate tiff stack was built. The program, which includes a user-friendly graphical user interface (GUI), streamlines data processing by isolating, pre-processing, and uniformly orienting individual embryos in preparation for visualization or automated analysis. Also supplied is an ImageJ macro that compiles individual embryo data into a multi-panel file that displays maximum intensity fluorescence projection and brightfield images for each embryo at each time point. The protocols and tools described herein were validated by using them to characterize embryonic development following knock-down of 40 previously described developmental genes; this analysis visualized previously annotated developmental phenotypes and revealed new ones. In summary, this work details a semi-high-throughput imaging method coupled with a cropping program and ImageJ visualization tool that, when combined with strains expressing informative fluorescent markers, greatly accelerates experiments to analyze embryonic development.
The C. elegans embryo is an important model system for mechanistic cell biology and analysis of cell fate specification and morphogenetic events driving embryonic development1,2,3,4,5,6,7,8,9. To date, much of the characterization of both cellular-level events and cell fate specification in the embryo has been achieved using relatively high temporal resolution one-at-a-time imaging experiments (i.e., acquisition every 10–100 s) of embryos expressing fluorescent markers. Although well suited for events on the order of seconds to tens of minutes, this approach becomes technically limiting for the characterization of longer processes, on the order of hours to days. Embryonic development from first cleavage to the end of elongation takes about 10 h. At this time-scale, semi-high-throughput methods that would allow for simultaneous lower time resolution imaging (i.e., acquisition at 5–20 min time intervals) of larger cohorts of embryos, from different conditions, would open up a new range of experiments; for example, enabling systematic large-scale screening efforts and the analysis of sufficient numbers of embryos for comparisons of the consequences of molecular perturbations.
Here, we describe a semi-high-throughput method for monitoring C. elegans embryogenesis that enables the simultaneous 3D time-lapse imaging of development in 80–100 embryos, from up to 14 different conditions, in a single overnight run. The protocol is straightforward to implement and can be carried out by any laboratory with access to a microscope with point visiting capabilities. The major steps in this protocol are outlined in Figure 1. In brief, embryos are dissected from gravid adults expressing fluorescent markers of interest and transfer young embryos (2–8 cell stage) to wells of a 384-well plate for imaging. In this format, the relatively small well size funnels embryos into a narrow area, which facilitates the identification of fields containing multiple embryos for time-lapse imaging. To maintain roughly synchronous development across the cohort of embryos, dissections are performed in chilled media and the plate is held on ice, which prevents significant development during the hour-long dissection time window. The plate is transferred to the microscope and embryos are filmed in a temperature-controlled room overnight, at 20 min time intervals, using a 60x oil immersion 1.35 NA lens, to collect the full z-range in 2 µm steps. Fifty fields, each containing between 1–5 embryos, are imaged in a single overnight run. Depending on the desired experiment, the time resolution could be increased (for example, imaging at 5–10 min intervals) by proportionally decreasing the number of imaged fields.
With this protocol, even a single overnight run generates a significant amount of data (80–100 embryos spread out over 50 fields) and larger experiments can quickly become unmanageable with respect to data analysis. To facilitate processing, visualization and streamline analysis of this data, a program was built to crop out and orient embryos and perform pre-processing steps (optional), and an ImageJ macro that compiles the data to simplify viewing. These programs can be used to process images collected using conventional approaches, as they are independent of the imaging method, requiring only a single brightfield plane. The first program takes in a 4D field containing multiple embryos (GUI option or source code embryoCrop.py) or multiple 4D fields containing multiple embryos (screenCrop.py), tightly crops embryos and orients them in an anterior-posterior configuration. These programs also give users the option to perform background subtraction, drift correction, and attenuation correction. The resulting files are uniformly pre-processed, tightly cropped tiff stacks for each embryo that are amendable to automated image analysis. To make it simpler to view all embryos for each condition, an ImageJ macro (OpenandCombine_embsV2.ijm) was written, which assembles all embryos from a given condition into a single tiff stack and arrays brightfield images and maximum intensity projection color (RGB) overlays, side-by-side, for each embryo. The methods were validated by using them to characterize embryonic development after knock-down of 40 previously-described developmental genes in a pair of custom-built strains expressing fluorescent markers optimized to visualize key aspects of germ-layer specification and morphogenesis10,11. Together, the semi-high throughput embryo imaging protocol and image processing tools will enable higher sample number experiments and large-scale screening efforts aimed at understanding developmental processes. In addition, these strains will also provide an efficient means for examining the effects of molecular perturbations on embryogenesis.
1. Preparing C. elegans Embryos for Semi-high-throughput Imaging
NOTE: The goal of this portion of the protocol is to load a population of semi-synchronized (2 to 8-cell stage) C. elegans embryos, dissected from suitable marker strains (Figure 2), into a glass-bottom 384-well plate for imaging. Other plate formats could also work, but the 384 well plates are preferred because the small well size constrains the spread of embryos to a relatively small area, which facilitates the identification of fields containing multiple embryos for time-lapse imaging. Roughly synchronizing the embryos ensures that the full course of development is captured for each of the embryos in a field.
2. Embryonic Lethality Scoring
3. Automated Cropping (Figure 3A)
NOTE: The software is housed in two locations: (1) Zenodo houses a user-friendly version of the software12 that does not require any programming expertise. (2) Github contains the source code for our embryoCropUI.py and screenCrop.py software13, which require proficiency with Python. Detailed instructions for downloading and operating both versions of the program can be found below.
4. Visualization (Figure 4)
NOTE: OpenandCombine_embsV2.ijm10,12 is an ImageJ macro that will construct an easy to view tiff file from all the images for a specific strain and condition. Installation of FIJI/ImageJ14,15 is required. This macro runs according to our file structure; it will need to be modified to work with other file structures. A guide to proper file structure and detailed description of important considerations can be found at the end of the GUI_Instructions_zenodo_repoV2.docx file on the Zenodo repository. Please read through these instructions completely before imaging to properly name and structure files to interface best with this macro. For reference, our file location structure looks like this:
Z:\cropped\Target\Strain\Emb#\Target_Emb#_15 Digit Unique Identifier _W##F#_T##_Z##_C#.tif
i.e. Z:\cropped\EMBD0001\GLS\Emb1\EMBD0001_Emb1_20140327T135219_W02F1_T01_Z01_C1.tif
A significant challenge in characterizing the effect of molecular perturbations on C. elegans embryonic development is that it takes about 10 h for embryos to progress from first cleavage to the end of elongation at 20°16. A semi-high-throughput method in which large cohorts of embryos can be simultaneously imaged is useful for events on this time-scale because it permits imaging of multiple conditions in parallel with a sufficient ensemble size for each condition to enable quantitat...
This work describes a suite of tools and methods that were developed to enable larger-scale efforts to profile the function of genes in embryonic development in C. elegans. Our semi-high-throughput method allows 3D time-lapse imaging of embryonic development at 20 min resolution for 80–100 embryos in a single experiment. While this protocol can be adapted for use with any desired marker strain(s), this work demonstrates the potential of the method using two custom strains developed to monitor events during...
None
S.D.O. was supported by the National Institute of General Medical Sciences-sponsored University of California San Diego Institutional Research and Academic Career Development Award (NIH/IRACDA K12 GM068524). A.D. and K.O. were supported by the Ludwig Institute for Cancer Research, which also provided them with research funding used to support this work. We are grateful to Andrew Chisholm for his advice in the early phases of this project, Ronald Biggs for contributions to this project after the initial method development phase, and Dave Jenkins and Andy Shiau for support and access to the Small Molecule Discovery group’s high-content imaging system.
Name | Company | Catalog Number | Comments |
Aspirator Tube Assembly | Drummond Scientific | 2-000-000 | |
Calibrated Pipette (25mL) | Drummond Scientific | 2-000-025 | |
Cell Voyager Software | Yokogawa Electric Corp | Included with CV1000 | |
Conical Tube (15 mL ) | USA Scientific | 1475-0501 | |
CV1000 Microscope | Yokogawa Electric Corp | CV1000 | |
Depression slide (3-well) | Erie Scientific | 1520-006 | |
Dissection Microscope | Nikon | SMZ-645 | |
Eppendorf Centrifuge 5810R | Eppendorf | 5811 07336 | |
ImageJ/FIJI | Open Source | https://imagej.net/Fiji | |
M9 Buffer | Lab Prepared | https://openwetware.org/wiki/M9_salts | |
Microcentrifuge Tube (1.5 mLl) | USA Scientific | 1615-5500 | |
Microseal F-foil Seal | Bio-Rad | MSF1001 | |
NGM Plates | Lab Prepared | http://www.wormbook.org/chapters/www_strainmaintain/strainmaintain.html#d0e214 | |
Scalpel #15 | Bard Parker | REF 371615 | |
Sensoplate Plus, 384 Well, F-bottom, Glass Bottom | Greiner Bio-One | 781855 | |
Tetramisole Hydrochloride | Sigma Aldirch | T1512-10G | |
Tweezers, Dumont #3 | Electron Microscopy Sciences | 0109-3-PO | |
U-PlanApo objective (10× 0.4NA) | Olympus | 1-U2B823 | |
U-PlanApo objective (60× 1.35 NA) | Olympus | 1-U2B832 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved