Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Method Article
Эта работа описывает полу-высокой пропускной протокол, который позволяет одновременное 3D замедленной визуализации эмбриогенеза в 80-100 C. elegans эмбрионов в одном ночном запуске. Кроме того, для оптимизации анализа данных включены инструменты обработки изображений и визуализации. Сочетание этих методов с пользовательскими штаммами репортера позволяет детально контролировать эмбриогенез.
C. elegans является главным системой систематического анализа спецификации судьбы клеток и морфогенетических событий во время эмбрионального развития. Одна из проблем заключается в том, что эмбриогенез динамически разворачивается в течение примерно 13 ч; эта полудневная шкала времени ограничила масштабы экспериментов, ограничив количество эмбрионов, которые могут быть изображены. Здесь мы описываем полу-высокой пропускной протокол, который позволяет для одновременного 3D промежуток времени изображения развития в 80-100 эмбрионов при умеренном разрешении времени, от до 14 различных условиях, в одном ночном запуске. Протокол прост и может быть реализован любой лабораторией с доступом к микроскопу с возможностью посещения точки. Полезность этого протокола демонстрируется с помощью его изображения двух специально построенных штаммов, выражающих флуоресцентные маркеры, оптимизированные для визуализации ключевых аспектов спецификации зародышевого слоя и морфогенеза. Для анализа данных была создана пользовательская программа, которая выводит отдельные эмбрионы из более широкого поля зрения во всех каналах, z-шагах и тайм-пойнтах и сохраняет последовательности для каждого эмбриона в отдельный стек tiff. Программа, которая включает в себя удобный графический пользовательский интерфейс (GUI), упрощает обработку данных путем изоляции, предварительной обработки и равномерной ориентации отдельных эмбрионов в рамках подготовки к визуализации или автоматизированного анализа. Также поставляется макрос ImageJ, который собирает индивидуальные данные эмбриона в многопанельный файл, который отображает максимальную интенсивность флуоресценции проекции и яркие изображения поля для каждого эмбриона в каждый момент времени. Протоколы и инструменты, описанные в этом вопросе, были проверены с помощью их характеристики эмбрионального развития после стука 40 ранее описанных генов развития; этот анализ визуализировал ранее аннотированные фенотипы развития и выявил новые. Таким образом, эта работа детали полу-высокой пропускной способ визуализации в сочетании с программой обрезки и ImageJ визуализации инструмент, который, в сочетании с штаммами, выражающими информативные флуоресцентные маркеры, значительно ускоряет эксперименты для анализа эмбрионального развития.
Эмбрион C. elegans является важной модельной системой для механистической клеточной биологии и анализа спецификации судьбы клеток и морфогенетических событий, движущих эмбриональное развитие1,2,3,4 ,5,6,7,8,9. На сегодняшний день большая часть характеристиккаки как клеточного уровня событий и клеточной судьбы спецификации в эмбрионе была достигнута с использованием относительно высокого временного разрешения один на время изображений экспериментов (т.е. приобретение каждые 10-100 с) эмбрионов выражения флуоресцентные маркеры. Хотя этот подход хорошо подходит для событий на срокотдок до десятков минут, он становится технически ограничивающим для характеристики более длительных процессов, на порядок часов до нескольких дней. Эмбриональное развитие от первого расщепления до конца удлинения занимает около 10 ч. В этом временном масштабе, полу-высокой пропускной связи методы, которые позволили бы одновременное снижение времени изображения (т.е. приобретение на 5-20 минут интервалов времени) больших когорты эмбрионов, из различных условий, откроет новый спектр экспериментов; например, проведение систематических крупномасштабных скрининговых усилий и анализ достаточного количества эмбрионов для сопоставления последствий молекулярных возмущений.
Здесь мы описываем полувысокой пропускной способ мониторинга c. elegans embryogenesis, который позволяет одновременно еженедельную 3D-временную визуализацию развития в 80-100 эмбрионах, от до 14 различных условий, в одном ночном запуске. Протокол прост в реализации и может быть выполнен любой лабораторией с доступом к микроскопу с возможностями посещения точек. Основные шаги в этом протоколе изложены на рисунке 1. Короче говоря, эмбрионы вскрыты от gravid взрослых, выражающих флуоресцентные маркеры интереса и передачи молодых эмбрионов (2-8 клеточной стадии) в колодцы 384-хорошо пластины для визуализации. В этом формате относительно небольшой размер воронки эмбрионов в узкую область, что облегчает идентификацию полей, содержащих несколько эмбрионов для замедленной визуализации. Для поддержания примерно синхронного развития в когорте эмбрионов, вскрытия выполняются в охлажденных носителях и пластина удерживается на льду, что предотвращает значительное развитие в течение часового времени вскрытия. Пластина передается в микроскоп и эмбрионы снимаются в температурно-контролируемой комнате на ночь, с интервалом в 20 минут, используя 60x погружение маслом 1.35 NA объектив, чтобы собрать полный z-диапазон в 2 мкм шагов. Пятьдесят полей, каждый из которых содержит от 1 до 5 эмбрионов, изображены в одном ночном запуске. В зависимости от желаемого эксперимента, разрешение времени может быть увеличено (например, изображение с интервалом 5-10 минут) за счет пропорционального уменьшения количества изображенных полей.
С помощью этого протокола даже один ночной запуск генерирует значительный объем данных (80–100 эмбрионов, разбросанных по 50 полям), и более крупные эксперименты могут быстро стать неуправляемыми в отношении анализа данных. Для облегчения обработки, визуализации и оптимизации анализа этих данных была создана программа для обрезки и ориентации эмбрионов и выполнения предобработки (необязательно), а также макрос ImageJ, который собирает данные для упрощения просмотра. Эти программы могут быть использованы для обработки изображений, собранных с помощью обычных подходов, так как они не зависят от метода визуализации, требующего только одной плоскости яркого поля. Первая программа использует 4D-поле, содержащее несколько эмбрионов (опция GUI или исходный код embryoCrop.py) или несколько 4D полей, содержащих несколько эмбрионов (screenCrop.py), плотно выращивают эмбрионы и ориентируют их в передне-задней конфигурации. Эти программы также дают пользователям возможность выполнять фоновое вычитание, коррекцию дрейфа и коррекцию затухания. Полученные файлы равномерно предварительно обработаны, плотно обрезанные стеки tiff для каждого эмбриона, которые поддаются изменению автоматизированного анализа изображений. Чтобы сделать его проще для просмотра всех эмбрионов для каждого состояния, ImageJ макрос (OpenandCombine'embsV2.ijm) был написан, который собирает все эмбрионы из данного состояния в один стек тифф и массивы яркие изображения поля и максимальной интенсивности проекции цвета ( RGB) накладки, бок о бок, для каждого эмбриона. Методы были проверены с помощью их для характеристики эмбрионального развития после нокдауна 40 ранее описанных генов развития в паре специально построенных штаммов, выражающих флуоресцентные маркеры, оптимизированные для визуализации ключевых аспектов зародышевого слоя спецификации и морфогенеза10,11. В совокупности полувысокой пропускной процесс обработки эмбрионов и инструменты обработки изображений позволят проводить эксперименты с более высоким числом образцов и проводить крупномасштабные скрининговые усилия, направленные на понимание процессов развития. Кроме того, эти штаммы также обеспечат эффективное средство для изучения влияния молекулярных возмущений на эмбриогенез.
1. Подготовка C. elegans Эмбрионы для полу-высокой пропускной записи изображений
ПРИМЕЧАНИЕ: Цель этой части протокола заключается в загрузке популяции полусинхронизированных (от 2 до 8-клеточной стадии) C. elegans эмбрионов, расчлененных из подходящих штаммов маркера(рисунок 2), в стеклянно-нижней 384-коловидной пластины для визуализации. Другие форматы пластин также могут работать, но 384 пластины скважины являются предпочтительными, поскольку небольшой размер скважины ограничивает распространение эмбрионов на относительно небольшой площади, что облегчает идентификацию полей, содержащих несколько эмбрионов для визуализации замедленного действия. Грубо синхронизация эмбрионов гарантирует, что полный ход развития будет захвачен для каждого из эмбрионов в поле.
2. Эмбриональный Летальность Скоринг
3. Автоматизированная обрезка(рисунок 3A)
ПРИМЕЧАНИЕ: Программное обеспечение размещается в двух местах: (1) Зенодо дома удобной версии программного обеспечения12, который не требует каких-либо знаний программирования. (2) Github содержит исходный код для нашего embryoCropUI.py и screenCrop.py программного обеспечения13, которые требуют знания с Python. Подробные инструкции по загрузке и эксплуатации обеих версий программы можно найти ниже.
4. Визуализация(рисунок 4)
ПРИМЕЧАНИЕ: OpenandCombine'embsV2.ijm10,12 является Macro ImageJ, который будет строить простой для просмотра файл айф из всех изображений для конкретного напряжения и состояния. Требуется установка FIJI/ImageJ14,15. Этот макрос работает в соответствии с нашей структурой файлов; его необходимо будет модифицировать для работы с другими файлофайлными структурами. Руководство по надлежащей структуре файлов и подробное описание важных соображений можно найти в конце GUI-Инструкции-zenodo-repoV2.docx файла на репозиторий Зенодо. Пожалуйста, прочитайте эти инструкции полностью перед визуализацией, чтобы правильно имя и структура файлов, чтобы лучше всего взаимодействовать с этим макросом. Для справки, наша структура местоположения файла выглядит следующим образом:
Вопрос: «обрезанный»-Таргет»-Эмб»-Эмб»-15 Дигит уникальный идентификатор «W»#F »T»#_Z.#_C.tif
т.е. ::«Обрезанный»EMBD0001»GLS-Emb1-EMB1-20140327T135219
Значительная проблема в характеристике влияния молекулярных возмущений на эмбриональное развитие C. elegans заключается в том, что эмбрионам требуется около 10 ч, чтобы прогрессировать от первого расщепления до конца удлинения при 20'16. Полу-высокой пропускной метод, в кот?...
Эта работа описывает набор инструментов и методов, которые были разработаны для того, чтобы позволить более масштабные усилия по профилировать функции генов в эмбриональном развитии в C. elegans. Наш метод полувысокой пропускной записи позволяет 3D-замедленной визуализации эмбрионал?...
Ни один
S.D.O. была поддержана Национальным институтом общих медицинских наук под эгидой Калифорнийского университета Сан-Диего Институциональные исследования и академическое развитие карьеры премии (NIH/ IRACDA K12 GM068524). A.D. и K.O. были поддержаны Институтом Людвига по исследованию рака, который также предоставил им финансирование исследований, используемых для поддержки этой работы. Мы благодарны Эндрю Чисхолму за его советы на ранних этапах этого проекта, Рональду Биггсу за вклад в этот проект после начальной стадии разработки метода, и Дэйву Дженкинсу и Энди Шиау за поддержку и доступ к открытию малых молекул высокососодержание системы визуализации группы.
Name | Company | Catalog Number | Comments |
Aspirator Tube Assembly | Drummond Scientific | 2-000-000 | |
Calibrated Pipette (25 mL) | Drummond Scientific | 2-000-025 | |
Cell Voyager Software | Yokogawa Electric Corp | Included with CV1000 | |
Conical Tube (15 mL) | USA Scientific | 1475-0501 | |
CV1000 Microscope | Yokogawa Electric Corp | CV1000 | |
Depression slide (3-well) | Erie Scientific | 1520-006 | |
Dissection Microscope | Nikon | SMZ-645 | |
Eppendorf Centrifuge 5810R | Eppendorf | 5811 07336 | |
ImageJ/FIJI | Open Source | https://imagej.net/Fiji | |
M9 Buffer | Lab Prepared | https://openwetware.org/wiki/M9_salts | |
Microcentrifuge Tube (1.5 mL) | USA Scientific | 1615-5500 | |
Microseal F-foil Seal | Bio-Rad | MSF1001 | |
NGM Plates | Lab Prepared | http://www.wormbook.org/chapters/www_strainmaintain/strainmaintain.html#d0e214 | |
Scalpel #15 | Bard Parker | REF 371615 | |
Sensoplate Plus, 384 Well, F-bottom, Glass Bottom | Greiner Bio-One | 781855 | |
Tetramisole Hydrochloride | Sigma Aldirch | T1512-10G | |
Tweezers, Dumont #3 | Electron Microscopy Sciences | 0109-3-PO | |
U-PlanApo objective (10× 0.4 NA) | Olympus | 1-U2B823 | |
U-PlanApo objective (60× 1.35 NA) | Olympus | 1-U2B832 |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены