A subscription to JoVE is required to view this content. Sign in or start your free trial.
The goal of this protocol is to form ensembles of molecular motors on DNA origami nanostructures and observe the ensemble motility using total internal reflection fluorescence microscopy.
Cytoskeletal motors are responsible for a wide variety of functions in eukaryotic cells, including mitosis, cargo transport, cellular motility, and others. Many of these functions require motors to operate in ensembles. Despite a wealth of knowledge about the mechanisms of individual cytoskeletal motors, comparatively less is known about the mechanisms and emergent behaviors of motor ensembles, examples of which include changes to ensemble processivity and velocity with changing motor number, location, and configuration. Structural DNA nanotechnology, and the specific technique of DNA origami, enables the molecular construction of well-defined architectures of motor ensembles. The shape of cargo structures as well as the type, number and placement of motors on the structure can all be controlled. Here, we provide detailed protocols for producing these ensembles and observing them using total internal reflection fluorescence microscopy. Although these techniques have been specifically applied for cytoskeletal motors, the methods are generalizable to other proteins that assemble in complexes to accomplish their tasks. Overall, the DNA origami method for creating well-defined ensembles of motor proteins provides a powerful tool for dissecting the mechanisms that lead to emergent motile behavior.
Dynein and kinesin are cytoskeletal motor proteins responsible for myriad functions in eukaryotic cells1. By converting the chemical energy of ATP hydrolysis into productive work, these motors translocate on microtubules to haul and distribute various intracellular cargos. They also coordinate in the massive intracellular rearrangements associated with mitosis, where they exhibit orchestrated forces that contribute to the positioning and separation of chromosomes. Structural, biochemical, and biophysical assays, including single molecule observations, have revealed the mechanisms of these motors at the individual level (well-reviewed in previou....
1. Growth, expression and harvesting of motor proteins controlled by a galactose induced promoter
Successful purifications of motors and chassis structures were assayed by gel electrophoresis. SDS-PAGE analysis confirmed the successful extraction of dynein from yeast (Figure 2), as the final filtrate collected in step 2.3.7 showed a clear, sharp band at the position of ~350 kDa. As expected, this dynein band was absent from the flowthrough and wash that removed unwanted proteins, and the beads from which dynein was cleaved. The observation suggests that t.......
The molecular construction techniques of DNA origami provide a unique way to construct motor ensembles with defined architectures, motor numbers, and types, enabling studies of how emergent behavior arises from specific motor configurations31. As structural and cellular studies continue to elucidate examples of cytoskeletal motors working in teams, techniques for isolating and investigating the biophysical and biochemical mechanisms of motors in ensembles are growing in utility. For example, cryo-.......
We thank K. Chau, J. Morgan, and A. Driller-Colangelo for contributing to the techniques of the segmented DNA origami chassis. We also thank former members of the Reck-Peterson and Shih laboratories for helpful discussions and contributions to the original development of these techniques. We thank J. Wopereis and the Smith College Center for Microscopy and Imaging and L. Bierwert and the Smith College Center for Molecular Biology. We gratefully acknowledge the NSF MRI program for the acquisition of a TIRF microscope.
....Name | Company | Catalog Number | Comments |
2 mL Round Bottom Tube | USA Scientific | 1620-2700 | |
Biotin labeled tubulin protein: porcine brain, >99% pure | Cytoskeleton.com | T333P-A | |
Biotin-BSA | Sigma | A8549-10MG | |
Bottle Assembly, Polycarbonate, 250 mL, 62 x 120 mm | Beckman Coulter | 356013 | |
Bottle, with Cap Assembly, Polycarbonate, 10.4 mL, 16 x 76 mm | Beckman Coulter | 355603 | |
Centrifugal Filter Unit | Millipore Sigma | UFC30VV00 | |
IgG Sepharose 6 Fast Flow, 10 mL | GE Healthcare | 17096901 | |
Micro Bio-Spin Chromatography Columns, empty | Bio-Rad | 7326204EDU | |
P8064 Scaffold | Tilibit | 2 mL at 400nM | |
Poly-Prep Chromatography Columns | Bio-Rad | 731-1550 | |
ProTev Protease | Promega | V6101 | |
Scotch Double Sided Tape with Dispenser | amazon.com | N/A | |
Sephacryl S-500 HR | GE Healthcare | 17061310 | |
Streptavidin | Thermo Fisher | 434302 | |
SYBR Safe DNA stain | Invitrogen | ||
Tubulin protein (>99% pure): porcine brain | Cytoskeleton.com | T240-B | |
Tubulin, HiLyte 647 | Cytoskeleton.com | TL670M-A | |
Ultra-Clear Centrifuge Tubes | Beckman Coulter | 344090 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved