JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

A protocol to generate human primary endometrial organoids that consist of epithelial and stromal cells and retain characteristics of the native endometrial tissue is presented. This protocol describes methods from uterine tissue acquisition to the histologic processing of endometrial organoids.

Abstract

The human endometrium is one of the most hormonally responsive tissues in the body and is essential for the establishment of pregnancy. This tissue can also become diseased and cause morbidity and even death. Model systems to study human endometrial biology have been limited to in vitro culture systems of single cell types. In addition, the epithelial cells, one of the major cell types of the endometrium, do not propagate well or retain their physiological traits in culture, and thus our understanding of endometrial biology remains limited. We have generated, for the first time, endometrial organoids that consist of both epithelial and stromal cells of the human endometrium. These organoids do not require any exogenous scaffold materials and specifically organize so that epithelial cells encompass the spheroid-like structure and become polarized with stromal cells in the center that produce and secrete collagen. Estrogen, progesterone and androgen receptors are expressed in the epithelial and stromal cells and treatment with physiological levels of estrogen and testosterone promote the organization of the organoids. This new model system can be used to study normal endometrial biology and disease in ways that were not possible before.

Introduction

The human endometrium lines the uterine cavity and serves as the first contact for the embryo during implantation. The endometrium is comprised of luminal and glandular epithelial cells, supportive stromal fibroblasts, endothelial cells and immune cells. Together, these cell types make up the endometrial tissue which is one of the most responsive tissues to sex steroid hormones1. The changes that occur during each menstrual cycle are striking. Appropriate growth and remodeling of the endometrium is required to allow for embryo implantation to occur. Aberrant response to estrogen and progesterone can result in a refractory endometrium that does not allow for successful establishment of pregnancy and can even result in diseases including endometrial neoplasia.

In order to study the hormone responses and essential changes that occur in the endometrium, cells from endometrial tissues excised from patients during surgery or endometrial biopsy have been propagated in cell culture. Endometrial stromal cells preferentially proliferate and propagate readily, and the process of differentiation induced by progesterone can be recapitulated in vitro. As a result, much has been learned during this differentiation process, termed decidualization2,3. The other major cell type in the endometrium, the luminal and glandular epithelial cells, however, do not grow well as traditional monolayers, losing polarity, becoming senescent, and having limited proliferative potential. As a result, less is known of their biology and their role in the human endometrium. As many neoplasia originate from the epithelial cells, mechanisms associated with hyperplasia or transformation to cancer cells remain to be fully defined. Furthermore, studies have established that hormone response involves the intimate paracrine actions between the epithelial and stromal cells of the endometrium4,5.

Recently, a three-dimensional (3D) organoid culture of endometrial epithelial cells was established by two independent groups6,7, which are the first reports of organoids formed from endometrial tissue. These organoids were comprised of endometrial epithelial cells embedded within a protein matrix (Table of Materials) and did not include an important hormonally responsive compartment of the endometrial endometrium, the stromal fibroblasts. As the matrix proteins can vary from lot to lot and can trigger signaling pathways that do not necessarily occur in the tissue, it would be ideal to replace the matrix proteins with components of the endometrium. In the current study, a protocol to generate scaffold-free human endometrial organoids of epithelial and stromal cells of the human endometrium is presented. The presence of stromal cells not only provides the support for epithelial cells but also provides the necessary paracrine actions that have been established to be important for endometrial hormone response4,8,9.

The new multicellular endometrial organoid offers a model system of the endometrium that is simple to generate and that incorporates both epithelial and stromal cells. These organoids can be used to study long-term hormonal changes and early events of disease such as tumorigenesis due to hormonal imbalance or exogenous insults. The complexity of these organoids could eventually be expanded to include other cell types, including endothelial and immune cells with possibly myometrial cells to truly mimic human tissue physiology. 

Protocol

Endometrial samples were collected from premenopausal women undergoing routine hysterectomy for benign uterine conditions at Northwestern University Prentice Women's Hospital, according to an Institutional Review Board-approved protocol. Written consent was obtained from all women included in the study.

1. Preparation of Agarose Molds

  1. Prior to beginning cell isolation, cast and equilibrate 1.5% agarose micro molds (Table of Materials) to house the organoids according to the manufacturer’s instructions.

2. Generation of Endometrial Organoids

  1. Harvest primary stromal and epithelial cells
    1. In a biosafety cabinet using aseptic technique, prepare enzyme solution (2.5 mg/mL collagenase type I + 0.1 mg/mL DNase I in 10 mL of dispase [500 units]) at 37 °C, and sterile-filter the solution using a 0.2 µm syringe filter into a 15 mL conical tube.
    2. In a biosafety cabinet using aseptic technique, scrape off endometrium from the uterine biopsies and mince tissue under hood into very small pieces with a scalpel.
      NOTE: Endometrial tissue that is at least 20 mm x 10 mm x 1 mm is required to generate sufficient numbers of organoids.
    3. Put freshly minced tissue into the enzyme solution in a 15 mL conical tube. Close the cap and wrap the top with a wax film (Table of Materials) to prevent contamination.
    4. Put the tube with tissue in a water bath or an incubator at 37 °C for 30 min with gentle shaking (80−100 rpm).
    5. Stack a 100 µm cell strainer on top of a 20 µm cell strainer on a 50 mL conical tube. Filter the solution through the two strainers, and then rinse the 15 mL conical tube with 10 mL of Hank’s balanced salt solution (HBSS; Table of Materials) and put the wash through the strainer to ensure all cells are collected.
      NOTE: The flow-through liquid contains stromal cells and red blood cells (~20 mL total). Epithelial cells are collected on the 20 µm strainer. Chunks of undigested tissue remain on top of the 100 µm strainer. Discard undigested tissue into a biohazard waste container.
    6. Invert the 20 µm cell strainer from step 2.1.5 onto a new 50 mL conical tube and wash the epithelial cells off the strainer with 20 mL of organoid media (Table of Materials) supplemented with 1% pen/strep.
    7. Centrifuge the conical tubes from steps 2.1.5 and 2.1.6 at 500 x g for 5 min.
    8. With the collected stromal cells, remove the supernatant and resuspend the pellet with 10 mL of red blood cell lysis buffer.  Incubate at 37 °C for 10−15 min. Centrifuge the conical tube at 500 x g for 5 min, remove the supernatant, and resuspend the pellet with 200−300 µL of organoid media (see step 2.2.2 for further instructions).
    9. With the collected epithelial cells, remove the supernatant and re-suspend with 100 µL of organoid media (see step 2.2.2 for further instructions).
  2. Seeding cells
    1. After equilibrating the 1.5% agarose molds in wells (1 mold per well) of a 24-well plate, remove organoid media on the outside of the agarose molds and tilt the tissue culture plate so that the medium from the cell seeding chamber of the agarose dishes can also be carefully removed.
    2. View epithelial (from step 2.1.9) and stromal (from step 2.1.8) cell suspensions under the microscope.  Add more organoid media to either the epithelial or stromal cell suspensions 100 µL at a time, so that the suspensions are roughly equal in density.
      NOTE: Epithelial cells will clump together, and it is not advisable to digest/trypsinize epithelial cells into single cell suspensions.
    3. Combine 1 part of stromal cells with 3 parts of epithelial cells by volume.
    4. Pipette 50 µL (60,000 cells) of the combined cell suspension into the cell seeding chamber of the agarose mold.
    5. Once the agarose molds are filled with cells, carefully add 400 µL of fresh organoid media into the well of the 24-well plate.
      NOTE: The medium reaches just below the surface of the agarose dishes and will not cause the cells to float out of the molds. After 2−3 days, cells will settle and start to form organoids.
    6. Change medium every second day with 500 µL of organoid media.
    7. After 2-3 days, change medium to one that is supplemented with 0.1 nM estradiol (E) and 0.8 nM testosterone (T) to promote organization of epithelial and stromal cells.
      NOTE: Although organization of epithelial and stromal cells can occur with or without hormones, more organoids will organize in the presence of hormones.

3. Harvesting Endometrial Organoids for Experiments

NOTE: After the experiment is done, endometrial organoids can be processed for histology or RNA analysis.The following steps describe how to process the organoids.

  1. Histology
    1. Dissolve 1.5% agarose in phosphate-buffered saline (PBS) by boiling. Allow the liquid agarose to cool to approximately 50 °C.
    2. Under a dissecting microscope, tilt the 24-well plate and carefully pipette out the medium from the outside of agarose mold. Carefully pipette out the medium from the interior of the agarose mold to avoid disrupting the organoids.
    3. Under a dissecting microscope, carefully pipette 70-75 µL of warm (50 °C) 1.5% agarose into the chamber of the agarose dish. Be careful not to disturb the organoids.
    4. Let cool at 4 °C for 5 min.
    5. Add 4% paraformaldehyde (PFA) into each well of the 24 well plate and fix the entire sealed agarose mold containing organoids overnight at 4 °C. Then store in 70% ethanol at 4 °C until ready to process for paraffin embedding.
  2. RNA isolation
    1. Under a dissecting microscope, tilt the 24-well plate and carefully pipette out the medium from the chamber of the agarose mold.
    2. Forcefully pipette 1 mL of fresh organoid medium directly into the agarose mold so the organoids are flushed out of the microwells. Be careful not to create too many bubbles.
    3. Repeat the pipetting again with the same medium from step 3.2.2.
    4. Collect all the medium containing the organoids. Centrifuge at max speed to collect the organoids and proceed to RNA extraction.

Results

A schematic of the protocol is depicted in Figure 1. Uterine tissue was obtained from surgery after it was examined by pathologists. The endometrial lining was separated from the myometrium by scraping and the endometrial tissue was enzymatically digested to cells as outlined in the protocol. Epithelial and stromal cells were added into microwells in the agarose molds. After 7 days in culture, organoids were treated with E and T for an additional 7−14 days.

...

Discussion

We have generated human endometrial organoids comprised of epithelial and stromal cells of the endometrium without the use of exogenous scaffold materials. While it has already been shown that primary endometrial epithelial cells can form organoids6,7, these cells were embedded in a gelatinous matrix of proteins secreted by mouse sarcoma cells (see Table of Materials) to help form spheroid-like structures. In addition, endometrial stromal cells w...

Disclosures

The authors have nothing to disclose.

Acknowledgements

This study was funded by NIEHS/NIH/NCATS UG3 grant (ES029073) and Northwestern Feinberg School of Medicine Bridge fund (JJK). We would like to acknowledge the Northwestern Pathology Core Facility for processing the fixed organoids for paraffin embedding. We would like to acknowledge the entire UG3 team including the Woodruff, Burdette, and Urbanek labs for the insightful discussions and collaborations.

Materials

NameCompanyCatalog NumberComments
Agarose HS, molecular biology gradeDenville ScientificCA3510-6
Agarose moldsSigma-AldrichZ764043(https://www.microtissues.com/)
Ammonium chloride (NH4Cl)Amresco0621
β-EstradiolSigma-AldrichE2257
Collagenase, Type II, powderThermo Fisher Scientific17101015
DispaseCorning354235
DNase ISigma-AldrichD4513
EDTAFisher ScientificBP120-1
Eosin StainVWR95057-848
Estrogen Receptor (SP1), rabbit monoclonal antibodyThermo Fisher ScientificRM-9101-S
Fluoroshield with DAPI, histology mounting mediumSigma-AldrichF6057
Hank's Balanced Salt Solution (HBSS)Corning21-022-CV1x without calcium, magnesium, and phenol red
Hematoxylin Stain SolutionThermo Fisher Scientific3530-32Modified Harris formulation, mercury free
Heparin solutionSTEMCELL Technologies07980added to MammoCult media
Hydrocortisone stock solutionSTEMCELL Technologies07925added to MammoCult media
Organoid media - MammocultSTEMCELL Technologies05620supplemented with 2 µL/mL heparin and 5 µL/mL hydrocortisone
Paraformaldehyde, 16% solutionElectron Microscopy Sciences15710
Penicillin-StreptomycinThermo Fisher Scientific15140122
Phosphate buffered saline, pH 7.4Sigma-AldrichP3813
Progesterone Receptor, PgR 1294, unconjugated, culture supernatantAgilent TechnologiesM356801-2
protein matrix - MatrigelBD Biosciences356231
Purified mouse anti-E-cadherin antibodyBD Biociences610181Clone 36
Recombinant anti-vimentin antibody [EPR3776]Abcamab92547
RNA lysis and isolation kitZymo ResearchR2060
Sodium bicarbonate (NaHCO3)Sigma-AldrichS6014
TestosteroneSigma-Aldrich86500
Trichrome StainAbcamab150686
Wax film - ParafilmVWR52858-000

References

  1. Henriet, P., Gaide Chevronnay, H. P., Marbaix, E. The endocrine and paracrine control of menstruation. Molecular and Cellular Endocrinology. 358 (2), 197-207 (2012).
  2. Gellersen, B., Brosens, I. A., Brosens, J. J. Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. Seminars in Reproductive Medicine. 25 (6), 445-453 (2007).
  3. Gellersen, B., Brosens, J. J. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocrine Reviews. 35 (6), 851-905 (2014).
  4. Li, Q., et al. The antiproliferative action of progesterone in uterine epithelium is mediated by Hand2. Science. 331 (6019), 912-916 (2011).
  5. Wetendorf, M., DeMayo, F. J. The progesterone receptor regulates implantation, decidualization, and glandular development via a complex paracrine signaling network. Molecular and Cellular Endocrinology. 357 (1-2), 108-118 (2012).
  6. Boretto, M., et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development. 144 (10), 1775-1786 (2017).
  7. Turco, M. Y., et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nature Cell Biology. 19 (5), 568-577 (2017).
  8. Kurita, T., et al. Stromal progesterone receptors mediate the inhibitory effects of progesterone on estrogen-induced uterine epithelial cell deoxyribonucleic acid synthesis. Endocrinology. 139 (11), 4708-4713 (1998).
  9. Kim, J. J., Kurita, T., Bulun, S. E. Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer. Endocrine Reviews. 34 (1), 130-162 (2013).
  10. Bui, H. N., et al. Dynamics of serum testosterone during the menstrual cycle evaluated by daily measurements with an ID-LC-MS/MS method and a 2nd generation automated immunoassay. Steroids. 78 (1), 96-101 (2013).
  11. Wiwatpanit, T., Murphy, A. R., Lu, Z., Urbanek, M., Burdette, J. E., Woodruff, T. K., Kim, J. J. Scaffold-free endometrial organoids respond to excess androgens associated with polycystic ovarian syndrome. The Journal of Clinical Endocrinology & Metabolism. , (2019).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Endometrial OrganoidsMulticellularHormone ImbalanceEpithelial CellsStromal CellsTissue StructureDrug TestingCancer Risk FactorsObesityPolycystic Ovarian SyndromeParacrine ActionsCell IsolationAgarose MoldsBiosafety CabinetEnzyme SolutionIHC Staining

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved