A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This bilingual Stroop task uses Congruent, Incongruent, and Neutral stimuli presented in blocks in the first language (L1) only, the second language (L2) only, and a combination of L1 and L2. This task allows for an examination of language processing and cognitive control in both L1 and L2.
The Stroop task in its many variations has been used in fields such as psychology, linguistics, and neuroscience to examine questions regarding the automaticity of reading, language processing, and cognitive control, among others. When looking at bilingual individuals, this task can be used to obtain measures of language interference and control in both a bilingual's first language (L1) and second language (L2), as well as for testing the bilingual advantage hypothesis. The Stroop task presents participants with color terms written in congruent colors (e.g., the word RED written in red font), incongruent colors (e.g., the word RED written in green font), in addition to noncolor terms for control (e.g., the word TREE presented in any color), and uses the reaction times from the different conditions to assess the degree of interference and facilitation. In the covert version of the Stroop bilingual task (i.e., participants respond by pressing a button rather than naming aloud), stimuli in the L1 and the L2 are typically presented in separate blocks. While this allows for a simple, yet effective assessment of processing and cognitive control in each language, it fails to capture any potential differences in processing and control within bilingual young adult groups. The present task combines single-language blocks with a novel mixed-language block to increase the level of difficulty of the task, thus making it suitable for testing cognitive control in young adults. Representative results showing differences between performance in the single-language vs. mixed-language blocks are presented, and the benefits of a mixed-language block are discussed.
The Stroop task, named after its creator John Ridley Stroop, has enjoyed over 80 years of popularity in the literature1. This simple task has been used in hundreds of studies, with different variants created to examine diverse populations and research questions in fields such as psychology, linguistics, and neuroscience. In particular, it has allowed researchers to examine language processes such as the automaticity of written word reading2, as well as associated cognitive control processes. The latter are also termed "executive control", and encompass a set of processes that include, but are not limited to, inhi....
All methods and procedures described here have been approved by the University of Ottawa Research Ethics Board.
Figure 1: Stroop task sample stimuli. The color and noncolor terms as well as the background color used in the current experiment are shown. For Incongruent and Neutral stimuli, sample color-word stimuli are shown. In the experiment, any word cou.......
One benefit of including both single-language blocks as well as a mixed-language blocks is that it is possible to confirm the expected results (facilitation and inhibition effects) in each of the participants' languages. It will then be possible to interpret the findings from the mixed-language block. The results presented below are from a study investigating English-French Bilinguals. One of our main research questions focuses on how the age at which a second language is learned (age of acquisition, or AoA) may affe.......
The experimental design presented here describes a twist on the traditional Stroop task. The main goal of this twist is to add a level of complexity to the task that may allow differences to emerge between groups that, due to their age, are being tested at their peak of performance. Essentially, to make the task more challenging in order to be able to distinguish between groups, we added a mixed-language block to the traditional Stroop task, which typically only collects data from trials in one language at a time. For th.......
The research presented here was supported by a SSHRC Standard Research Grant and a SSHRC Insight Grant to the 1st author and by a SSHRC Doctoral Fellowship and an Ontario Graduate Fellowship to the 2nd author. We wish to thank the members of the ERPLing lab for discussion of the data and for help with the testing of the participants.
....Name | Company | Catalog Number | Comments |
Button box | Cedrus | Button box for response; however, any response pad or the computer keyboard can be used to collect responses. | |
Desktop computer (Windows OS) | Dell | Computer system for delivering stimuli; however, any computer, including laptops, can be used. | |
Presentation | Neurobehavioural Systems | Software for presenting behavioural experiments; however, the experiment can be programmed using a variety of experimental software. |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved