Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

In this experiment, a mouse is injected in its tail vein with Rhodamine B isothiocyanate–dextran that can stain blood vessels. After the liver is exposed and fixed, a specific part of the liver can be selected to observe the deep tissue in the living body using multiphoton microscopy.

Abstract

Observing the intravascular dynamics of mouse liver tissue allows us to conduct further in-depth observations and studies on tissue-related diseases of the mouse liver. A mouse is injected with a dye that can stain blood vessels. To observe the mouse liver in vivo, it is exposed and fixed in a frame. Two and three-dimensional images of the blood vessels in the liver tissue are obtained using a multiphoton microscope. Images of the tissues at the selected sites are continuously acquired to observe long-term changes; the dynamic changes of blood vessels in the liver tissues are also observed. Multiphoton microscopy is a method for observing cell and cell function in deep tissue sections or organs. Multiphoton microscopy has sensitivity to tissue microstructure and enables imaging of biological tissues at high spatial resolution in vivo, providing the ability to capture the biochemical information of the organization. Multiphoton microscopy is used to observe part of the liver but fixing the liver to make the image more stable is problematic. In this experiment, a special vacuum suction cup is used to fix the liver and obtain a more stable image of the liver under the microscope. In addition, this method can be used to observe dynamic changes of specific substances in the liver by marking such substances with dyes.

Introduction

Blood vessels can provide nutrients for various organ tissues of the human body, and exchange substances. At the same time, many cytokines, hormones, drugs, and cells also function through vascular transport to specific locations. Observing vascular changes in liver tissue can help in understanding the distribution of blood flow in liver tissue and the transport of substances, and assist in the analysis of certain vascular-related diseases1,2.

There are many ways to observe the blood vessels of the liver in mice. Among them, optical microscopy has many limitations in observing opaqu....

Protocol

All animal care and procedures were in accordance with China Nanfang Hospital policies for heath and well-being (application No: NFYY-2019-73).

1. Mouse preparation

  1. Anesthetize the mouse.
    1. Prepare sodium pentobarbital (50 mg/kg) in a syringe.
    2. Grab the mouse (8-week-old male C57BL/6) with the left hand so that its belly is facing up and its head is lower than its tail. Disinfect the abdominal skin with 75% alcohol.
    3. Holding the syringe in the right ha.......

Representative Results

The distribution of blood vessels in the liver can be seen in Figure 1, obtained using multiphoton microscopy. The blood vessel is divided into a plurality of branches emanating from a trunk and distributed to the surrounding space. The outer circumference of the blood vessel is red, the inner cavity is dark, and there are many things inside. The clearer the image, the closer to the plane of observation it is. There are also some red spots around, probably because the dye penetrates the surr.......

Discussion

Observing a specific living tissue is an effective means of understanding the changes, localization, and biological effects of the material inside the tissue17. In this experiment, the important steps are fixing the liver with an organ imaging fixture, which can solve the problem of motion artifacts due to breathing and heartbeats, and the use of a multiphoton microscope for observation. Using this method, the internal tissues of the liver in vivo are observed through a multiphoton microscope, and.......

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81772133, 81902444), the Guangdong Natural Science Fund (2020A1515010269, 2020A1515011367), the Guangzhou Citizen Health Science and Technology Research Project (201803010034, 201903010072), and the Military Medical Innovation Project (17CXZ008).

....

Materials

NameCompanyCatalog NumberComments
1 mL syringe x 2Hunan Pinan Medical Devices TechnologyYA0551
5 W heating padBiolinkOptics TechnologyBL336
75% absolute ethanolGuangdong Guanghua Sci-Tech1.17113.023
Absorbent cotton ballHealthy Sanitation Kingdom
Mouse surgical instrumentRWD Life ScienceSP0001-GIncluding scissors and tweezers
Multiphoton microscopyOlympusFV1200MPE
Organ imaging fixtureBiolinkOptics TechnologyBL336Including suction cup, hose, negative pressure pump and bracket
Rhodamine B isothiocyanate–DextranSigmaR9379
Shaving machineLei WaRE-3201
Sodium pentobarbitalSigmaP3761-25G

References

Explore More Articles

Multiphoton MicroscopyMouse LiverBlood VesselsVascular DyeRhodamine B Isothiocyanate DextranIn Vivo Imaging3D VisualizationAnesthesiaSurgical ProceduresLaser Scanning Microscope

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved