A subscription to JoVE is required to view this content. Sign in or start your free trial.
Conventional BODIPY conjugates can be used for live-cell single-molecule localization microscopy (SMLM) through exploitation of their transiently forming, red-shifted ground state dimers. We present an optimized SMLM protocol to track and resolve subcellular neutral lipids and fatty acids in living mammalian and yeast cells at the nanoscopic length scale.
Single molecule localization microscopy (SMLM) techniques overcome the optical diffraction limit of conventional fluorescence microscopy and can resolve intracellular structures and the dynamics of biomolecules with ~20 nm precision. A prerequisite for SMLM are fluorophores that transition from a dark to a fluorescent state in order to avoid spatio-temporal overlap of their point spread functions in each of the thousands of data acquisition frames. BODIPYs are well-established dyes with numerous conjugates used in conventional microscopy. The transient formation of red-shifted BODIPY ground-state dimers (DII) results in bright single molecule emission enabling single molecule localization microscopy (SMLM). Here we present a simple but versatile protocol for SMLM with conventional BODIPY conjugates in living yeast and mammalian cells. This procedure can be used to acquire super-resolution images and to track single BODIPY-DII states to extract spatio-temporal information of BODIPY conjugates. We apply this procedure to resolve lipid droplets (LDs), fatty acids, and lysosomes in living yeast and mammalian cells at the nanoscopic length scale. Furthermore, we demonstrate the multi-color imaging capability with BODIPY dyes when used in conjunction with other fluorescent probes. Our representative results show the differential spatial distribution and mobility of BODIPY-fatty acids and neutral lipids in yeast under fed and fasted conditions. This optimized protocol for SMLM can be used with hundreds of commercially available BODIPY conjugates and is a useful resource to study biological processes at the nanoscale far beyond the applications of this work.
Single-molecule localization microscopy (SMLM) techniques such as stochastic optical reconstruction microscopy (STORM) and photo-activated localization microscopy (PALM) have emerged as methods for generating super-resolution images with information beyond Abbe’s optical diffraction limit1,2 and for tracking the dynamics of single biomolecules3,4. One of the requirements for probes compatible with SMLM is the ability to control the number of active fluorophores at any time to avoid spatial overlap of their point spread functions (PSF). In each of the thousands of data acquisition frames, the location of each fluorescent fluorophores is then determined with ~20 nm precision by fitting its corresponding point-spread function. Traditionally, the on-off blinking of fluorophores has been controlled through stochastic photoswitching1,2,5 or chemically induced intrinsic blinking6. Other approaches include the induced activation of fluorogens upon transient binding to a fluorogen-activating protein7,8 and the programmable binding-unbinding of labeled DNA oligomers in total internal reflection fluorescence (TIRF) or light sheet excitation9. Recently, we reported a novel and versatile labeling strategy for SMLM10 in which previously reported red-shifted dimeric (DII) states of conventional boron di-pyromethane (BODIPY) conjugates11,12,13 are transiently forming and become specifically excited and detected with red-shifted wavelengths.
BODIPYs are widely used dyes with hundreds of variants that specifically label sub-cellular compartments and biomolecules14,15,16. Because of their ease of use and applicability in living cells, BODIPY variants are commercially available for conventional fluorescence microscopy. Here, we describe a detailed and optimized protocol on how the hundreds of commercially available BODIPY conjugates can be used for live-cell SMLM. By tuning the concentration of BODIPY monomers and by optimizing the excitation laser powers, imaging and data analysis parameters, high-quality super-resolution images and single molecule tracking data is obtained in living cells. When used at low concentration (25-100 nM), BODIPY conjugates can be simultaneously used for SMLM in the red-shifted channel and for correlative conventional fluorescence microscopy in the conventional emission channel. The obtained single molecule data can be analyzed to quantify the spatial organization of immobile structures and to extract the diffusive states of molecules in living cells17. The availability of BODIPY probes in both green and red forms allows for multi-color imaging when used in the right combination with other compatible fluorophores.
In this report, we provide an optimized protocol for acquiring and analyzing live-cell SMLM data using BODIPY-C12, BODIPY (493/503), BODIPY-C12 red and lysotracker-green in multiple colors. We resolve fatty acids and neutral lipids in living yeast and mammalian cells with ~30 nm resolution. We further demonstrate that yeast cells regulate the spatial distribution of externally added fatty acids depending on their metabolic state. We find that added BODIPY-fatty acids (FA) localize to the endoplasmic reticulum (ER) and lipid droplets (LDs) under fed conditions whereas BODIPY-FAs form non-LD clusters in the plasma membrane upon fasting. We further extend the application of this technique to image lysosomes and LDs in living mammalian cells. Our optimized protocol for SMLM using conventional BODIPY conjugates can be a useful resource to study biological processes at the nanoscale with the myriad available BODIPY conjugates.
NOTE: For yeast cloning and endogenous tagging please refer to our recent publication10.
1. Preparation of yeast cell samples for imaging
2. Preparation of mammalian cells for SMLM imaging
3. Equipment preparation
4. Data acquisition
5. Data analysis and single-molecule tracking
Here, we present an optimized sample preparation, data acquisition and analysis procedure for SMLM using BODIPY conjugates based on the protocol above (Figure 1A). To demonstrate an example of the workflow for acquiring and analyzing SMLM data, we employ BODIPY (493/503) in yeast to resolve LDs below the optical diffraction limit (Figure 1B-F). Examples of the different multi-color imaging modes of BODIPY in conjunction with other probes such as...
In this protocol, we demonstrated how conventional BODIPY conjugates can be used to obtain SMLM images with an order of magnitude improvement in spatial resolution. This method is based on exploiting previously reported, red-shifted DII states of conventional BODIPY dyes, which transiently form through bi-molecular encounters. These states can be specifically excited and detected with red-shifted wavelengths and are sparse and short-lived enough for SMLM. By tuning the concentration of BODIPY monomers along wi...
The authors declare no competing interests.
The research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R21GM127965.
Name | Company | Catalog Number | Comments |
BODIPY C12 | ThermoFisher | D3822 | Green fatty acid analog |
BODIPY C12 Red | ThermoFisher | D3835 | Red fatty acid analog |
BODIPY(493/503) | ThermoFisher | D3922 | Neutral lipid marker |
Concanavalin A | Sigma-Aldrich | C2010 | Cell immobilization on glass surface |
Drop-out Mix Complete w/o nitrogen base | US Biological | D9515 | Amino acids for SCD |
Dextrose | Sigma-Aldrich | G7021 | Carbon source for SCD |
Eight Well | Cellvis | C8-1.58-N | Chambered Coverglasses |
Eight Well, Lb-Tek II | Sigma-Aldrich | Chambered Coverglasses | |
ET525/50 | Chroma | Bandpass filter | |
ET595/50 | Chroma | Bandpass filter | |
ET610/75 | Chroma | Bandpass filter | |
Fetal Bovine Serum (FBS) | Gibco | 26140079 | Serum |
FF652 | Semrock | Beam splitter | |
FF731/137 | Semrock | Bandpass filter | |
FluoroBrite DMEM | ThermoFisher | A1896701 | Cell culture medium |
Hal4000 | Zhuang Lab, Harvard University | Data acquisition software | |
Ixon89Ultra DU-897U | Andor | EMCCD camera for photon detection | |
Laser 405, 488, 561, 640 nm | CW-OBIS | Lasers for excitation | |
Insight3 | Zhuang Lab, Harvard University | Single molecule localization software | |
L-Glutamine | Gibco | 25030-081 | Amino acid required for cell culture |
live-cell imaging solution | ThermoFisher | A14291DJ | Imaging buffer |
Lysotracker Green | ThermoFisher | L7526 | Bodipy based lysosome marker |
Mammalian ATCC U2OS cells (Manassas, VA) | Dr. Jochen Mueller (University of Minnesota) | ||
Nikon-CFI Apo 100 1.49 N.A | Nikon | Oil immersion objective | |
Penicillin streptomycin | Gibco | 15140-122 | Antibiotics |
Sodium Pyruvate | Gibco | 11360-070 | Supplement for cell culture |
T562lpxr | Chroma | Beam splitter | |
Trypsin-EDTA | Gibco | 15400-054 | Dissociation of adherent cell |
W303 MATa strain | Horizon-Dharmacon | YSC1058 | Parental yeast strain |
Yeast Nitrogen Base | Sigma-Aldrich | Y1250 | Nitrogen base without amino-acids |
zt405/488/561/640rdc | Chroma | Quadband dichroic mirror |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved