Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We describe an intracisternal injection that employs a needle bent at the tip that can be stabilized to the skull, thus eliminating the risk of damage to the underlying parenchyma. The approach can be used for genetic fate mapping and manipulations of leptomeningeal cells and for tracking cerebrospinal fluid movement.

Abstract

The protocol outlined here describes how to safely and manually inject solutions through the cisterna magna while eliminating the risk of damage to the underlying parenchyma. Previously published protocols recommend using straight needles that should be lowered to a maximum of 1-2 mm from the dural surface. The sudden drop in resistance once the dural membrane has been punctured makes it difficult to maintain the needle in a steady position. Our method, instead, employs a needle bent at the tip that can be stabilized against the occipital bone of the skull, thus preventing the syringe from penetrating into the tissue after perforation of the dural membrane. The procedure is straightforward, reproducible, and does not cause long-lasting discomfort in the operated animals. We describe the intracisternal injection strategy in the context of genetic fate mapping of vascular leptomeningeal cells. The same technique can, furthermore, be utilized to address a wide range of research questions, such as probing the role of leptomeninges in neurodevelopment and the spreading of bacterial meningitis, through genetic ablation of genes putatively implicated in these phenomena. Additionally, the procedure can be combined with an automatized infusion system for a constant delivery and used for tracking cerebrospinal fluid movement via injection of fluorescently labelled molecules.

Introduction

Leptomeningeal cells are a fibroblast-like population of cells organized in a thin layer overlaying the brain and expressing genes implicated in collagen crosslinking (e.g., Dcn and Lum), and in the establishment of a brain-meningeal barrier (e.g., Cldn11)1,2. Leptomeningeal cells are implicated in a wide range of physiological functions, from strict control over the cerebrospinal fluid drainage3 to guidance of neural progenitors in the developing brain4,5. A recent study has also proposed that leptome....

Protocol

The surgical procedures hereby presented were approved by Stockholms Norra Djurförsöksetiska Nämnd and carried out in agreement with specifications provided by the research institute (Karolinska Institute, Sweden).

NOTE: Intracisternal injection can be flexibly adapted for multiple research purposes. We present below a procedure developed to efficiently label leptomeningeal cells for fate mapping based on injection of endoxifen in a transgenic mouse line carryin.......

Representative Results

Intracisternal injection of endoxifen in transgenic mice expressing CreER under the Cx30 promoter13 and an inducible fluorescent reporter allows for specific recombination of leptomeningeal cells without labelling the neighboring Cx30-expressing surface and parenchymal astrocytes in the cortex (Figure 1). In order to gain access to the cisterna magna, the anesthetized animal is positioned with its body and its head at an angle of appro.......

Discussion

The protocol outlined here presents a straightforward and reproducible procedure to label leptomeningeal cells for fate mapping. We use intracisternal injection of endoxifen, an active metabolite of Tamoxifen, to induce expression of tdTomato fluorescent reporter in Cx30-CreER; R26R-tdTomato mice12,13.

Compared to other protocols used for gaining access to the cerebrospinal fluid through the cisterna magna9, our.......

Acknowledgements

This study was supported by grants from the Swedish Research Council, the Swedish Cancer Society, the Swedish Foundation for Strategic Research, Knut och Alice Wallenbergs Stiftelse and the Strategic Research Programme in Stem Cells and Regenerative Medicine at Karolinska Institutet (StratRegen).

....

Materials

NameCompanyCatalog NumberComments
Anesthesia unitUniventor 4108323102Complete of vaporizer, chamber, and tubing that connects to chamber and mouse head holder
Anesthesia (Isoflurane)Baxter Medical AB000890
BetadineSigma-AldrichPVP1
CarprofenOrion Pharma AB014920Commercial name Rymadil
Cyanoacrylate glueCarl Roth0258.1Use silk 5-0 sutures, in alternative
Medbond Tissue GlueStoelting50479
DMSOSigma-AldrichD2650
EndoxifenSigma-AldrichE8284
Ethanol 70%Histolab01370
Hamilton syringe (30G beveled needle)Hamilton80300
LidocaineAspen Nordic520455
Mouse head holderNarishige InternationalSGM-4With mouth piece for inhalational anhestetics. Alternatively, use a stereotactic frame
ScissorsFine Science Tools15009-08
ShaverAesculapGT420
Sterile absorption spearsFine Science Tools18105-01Sterile cotton swabs are also a good option
Surgical separatorWorld Precision Instrument501897
TweezersDumont11251-35
ViscotearsBausch&Lomb Nordic AB541760

References

  1. Vanlandewijck, M., et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature. 554 (7693), 475-480 (2018).
  2. Whish, S., et al. The inner CSF-brain barrier:....

Explore More Articles

Leptomeningeal CellsIntracisternal InjectionGene EditingNeurodevelopmentBacterial MeningitisCerebrospinal Fluid FlowHamilton SyringeEndoxifenIsofluraneCisterna MagnaDural MembraneSurgical Procedure

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved