Abstract
Behavior
* These authors contributed equally
Alcohol use disorder (AUD) remains a serious problem in our society. To develop effective interventions for addiction, it is important to understand the underlying neurobiological mechanisms, for which diverse experimental approaches and model systems are needed. The main ingredient of alcoholic beverages is ethanol, which causes adaptive changes in the central nervous system and behavior upon chronic intake. Behavioral sensitization (i.e., escalated responses) in particular represents a key adaptive change underlying addiction. Most ethanol-induced behavioral sensitization studies in animal models have been conducted on the locomotor activating effect of ethanol. A prominent effect of ethanol is behavioral disinhibition. Behavioral sensitization to the disinhibition effect of ethanol, however, is underrepresented. To address this issue, we developed the Flypub assay that allows measuring the escalated increase in disinhibited courtship activities upon recurring ethanol exposure in Drosophila melanogaster. Here, we report the step-by-step Flypub assay including assembly of ethanol exposure chambers, setup of the assay station, criteria for fly care and collection, ethanol delivery, quantification of disinhibited courtship activities, data processing and statistical analysis. Also provided are how to troubleshoot critical steps, overcome limitations and expand its utility to assess additional ethanol-induced behaviors. The Flypub assay in combination with powerful genetic tools in Drosophila melanogaster will facilitate the task of discovering the mechanism underlying ethanol-induced behavioral sensitization.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved