A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we described a protocol to quantitatively study the assembly and structure of the axon initial segments (AIS) of hippocampal neurons that lack pre-assembled AIS due to the absence of a giant ankyrin-G.
Neuronal axon initial segments (AIS) are sites of initiation of action potentials and have been extensively studied for their molecular structure, assembly and activity-dependent plasticity. Giant ankyrin-G, the master organizer of AIS, directly associates with membrane-spanning voltage gated sodium (VSVG) and potassium channels (KCNQ2/3), as well as 186 kDa neurofascin, a L1CAM cell adhesion molecule. Giant ankyrin-G also binds to and recruits cytoplasmic AIS molecules including beta-4-spectrin, and the microtubule-binding proteins, EB1/EB3 and Ndel1. Giant ankyrin-G is sufficient to rescue AIS formation in ankyrin-G deficient neurons. Ankyrin-G also includes a smaller 190 kDa isoform located at dendritic spines instead of the AIS, which is incapable of targeting to the AIS or rescuing the AIS in ankyrin-G-deficient neurons. Here, we described a protocol using cultured hippocampal neurons from ANK3-E22/23-flox mice, which, when transfected with Cre-BFP exhibit loss of all isoform of ankyrin-G and impair the formation of AIS. Combined a modified Banker glia/neuron co-culture system, we developed a method to transfect ankyrin-G null neurons with a 480 kDa ankyrin-G-GFP plasmid, which is sufficient to rescue the formation of AIS. We further employ a quantification method, developed by Salzer and colleagues to deal with variation in AIS distance from the neuronal cell bodies that occurs in hippocampal neuron cultures. This protocol allows quantitative studies of the de novo assembly and dynamic behavior of AIS.
The axon initial segment is located at the proximal axon in most vertebrate neurons. Functionally, AIS is where action potentials are initiated due to the high-density of voltage-gated sodium channels in this region. AIS of some excitatory neurons are also targeted by inhibitory interneurons through forming GABAergic synapses1,2,3. Therefore, AIS is a critical site to integrate cell signaling and modulate the excitability of neurons. AIS is normally 20-60 μm in length and located within 20 μm of the cell body. The length and position of AIS varies in neurons across ....
NOTE: This culture method of hippocampal neurons from postnatal 0-day ANK3-E22/23f/f mice is adapted from Gary Banker’s glia/neuron co-culture system. Therefore, it is critical to perform all steps after dissection in a clean hood using sterilized tools. This protocol takes up to 1 month. The workflow is displayed in Figure 3. The protocol follows the animal guidelines of Duke University.
1. Preparing of coverslips and neuronal plating dish.......
A complete set of experiment should include Cre-BFP only transfection as negative control, Cre-BFP plus 480 kDa ankyrin-G co-transfection as positive control and a non-transfected condition as technique control. In Cre-BFP only control, transfected neurons lack the accumulation of AIS markers, including ankyrin-G (ankG), beta4-spectrin (β4), neurofascin (Nf) and voltage gated sodium channels (VSVG) (Figure 4A)16. In contrast, Cre and 480 kDa ankyrin-G co-transfec.......
The assembly of AIS is organized by 480 kDa ankyrin-G. However, ankyrin-G has shorter isoforms that can target to the AIS of wildtype neurons, which may lead to difficulty in interpretation of structure-function analyses of AIS assembly. Here we present a method using neurons from ANK3-E22/23-flox mice that allows study of de novo assembly of the AIS. By transfecting with Cre-BFP at 3 div, we eliminate the all endogenous isoforms of ankyrin-G. We could also co-transfect 480 kDa ankyrin-G to rescue the f.......
We thank Dr. Gary Banker for suggestion on neuronal culture protocol. This work is supported by the Howard Hughes Medical Institute, a grant from NIH, and a George Barth Geller endowed professorship (V.B.).
....Name | Company | Catalog Number | Comments |
10xHBSS | Thermo Fisher Scientific | 14065-056 | |
18mm coverglass (1.5D) | Fisher Scientific | 12-545-84-1D | |
190kDa ankyrin-G-GFP | Addgene | #31059 | |
2.5% Tripsin without phenol red | Thermo Fisher Scientific | 14065-056 | |
480kDa ankyrin-G-GFP | lab made | Provide upon request | |
ANK3-E22/23f/f mice | JAX | Stock No: 029797 | B6.129-Ank3tm2.1Bnt/J; |
B27 serum-free supplement | Thermo Fisher Scientific | A3582801 | |
Boric acid | Sigma-Aldrich | B6768 | |
Cell strainer with 70-mm mesh | BD Biosciences | 352350 | |
Ceramic coverslip-staining rack | Thomas Scientific | 8542E40 | |
Cre-BFP | Addgene | #128174 | |
D-Glucose | Sigma-Aldrich | G7021 | |
DMEM | Thermo Fisher Scientific | 11995073 | |
GlutaMAX-I supplement | Thermo Fisher Scientific | A1286001 | |
Lipofectamine 2000 | Thermo Fisher Scientific | 11668030 | |
MEM with Earle’s salts and L-glutamine | Thermo Fisher Scientific | 11095-080 | |
Neurobasal Medium | Thermo Fisher Scientific | 21103-049 | |
Nitric acid 70% | Sigma-Aldrich | 225711 | |
Opti-MEM I Reduced Serum Medium | Thermo Fisher Scientific | 31985062 | |
Paraformaldehyde | Sigma-Aldrich | P6148 | |
Penicillin-streptomycin | Thermo Fisher Scientific | 15140122 | |
Poly-L-lysine hydrochloride | Sigma-Aldrich | 26124-78-7 | |
Potassium hydroxide | Sigma-Aldrich | 1310-58-3 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved