A subscription to JoVE is required to view this content. Sign in or start your free trial.
We developed a method to detect Phytophthora capsici zoospores in water sources using a filter paper DNA extraction method coupled with a loop-mediated isothermal amplification (LAMP) assay that can be analyzed in the field or in the lab.
Phytophthora capsici is a devastating oomycete pathogen that affects many important solanaceous and cucurbit crops causing significant economic losses in vegetable production annually. Phytophthora capsici is soil-borne and a persistent problem in vegetable fields due to its long-lived survival structures (oospores and chlamydospores) that resist weathering and degradation. The main method of dispersal is through the production of zoospores, which are single-celled, flagellated spores that can swim through thin films of water present on surfaces or in water-filled soil pores and can accumulate in puddles and ponds. Therefore, irrigation ponds can be a source of the pathogen and initial points of disease outbreaks. Detection of P. capsici in irrigation water is difficult using traditional culture-based methods because other microorganisms present in the environment, such as Pythium spp., usually overgrow P. capsici making it undetectable. To determine the presence of P. capsici spores in water sources (irrigation water, runoff, etc.), we developed a hand pump-based filter paper (8-10 µm) method that captures the pathogen’s spores (zoospores) and is later used to amplify the pathogen’s DNA through a novel loop-mediated isothermal amplification (LAMP) assay designed for the specific amplification of P. capsici. This method can amplify and detect DNA from a concentration as low as 1.2 x 102 zoospores/mL, which is 40 times more sensitive than conventional PCR. No cross-amplification was obtained when testing closely related species. LAMP was also performed using a colorimetric LAMP master mix dye, displaying results that could be read with the naked eye for on-site rapid detection. This protocol could be adapted to other pathogens that reside, accumulate, or are dispersed via contaminated irrigation systems.
Recycling water in farms and nurseries is becoming increasingly popular due to the increase in water costs and environmental concerns behind water usage. Many irrigation methods have been developed for growers to reduce the spread and occurrence of plant disease. Regardless of the source of the water (irrigation or precipitation), runoff is generated, and many vegetable and nursery growers have a pond to collect and recycle runoff1. This creates a reservoir for possible pathogen accumulation favoring the spread of pathogens when the recycled water is used to irrigate crops2,3,4. Oomycete plant pathogens particularly benefit from this practice as zoospores will accumulate in water and the primary dispersive spore is self-motile but requires surface water5,6,7. Phytophthora capsici is an oomycete pathogen that affects a significant number of solanaceous and cucurbit crops in different ways8. Often, the symptoms are damping-off of seedlings, root and crown rot; however, in crops such as cucumber, squash, melon, pumpkin, watermelon, eggplant and pepper, entire harvests may be lost due to fruit rot9. Although there are known methods of detecting this plant pathogen, most require an infection to have already taken place which is too late for any preventative fungicides to have a significant effect10.
The traditional method to test irrigation water for the detection and diagnosis of targeted microorganisms is an antiquated approach when speed and sensitivity are crucial to success and profitable crop production11,12. Plant tissue susceptible to the targeted pathogen (e.g., eggplant for P. capsici) is attached to a modified trap that is suspended in an irrigation pond for extended period before being removed and inspected for infection. Samples from the plant tissue are then plated on semi-selective media (PARPH) and incubated for culture growth, then morphological identification is performed using a compound microscope13. There are other similar detection methods for other plant pathogens using selective media and plating small amounts of contaminated water before sub-culturing14,15. These methods require anywhere from 2 to 6 weeks, several rounds of sub-culturing to isolate the organism, and experience on Phytophthora diagnostics to be able to recognize the key morphological characters of each species. These traditional methods do not work well for detection of irrigation water contaminated by P. capsici due to factors such as interference by other microorganisms that are also present in the water sources. Some fast-growing microorganisms like Pythium spp. and water-borne bacteria can overgrow on the plate making P. capsici undetectable16,17.
The purpose of this study was to develop a sensitive and specific molecular method that can be used in both field and laboratory settings to detect P. capsici zoospores in irrigation water. The protocol includes the development of a novel loop-mediated isothermal amplification (LAMP) primer set able to specifically amplify P. capsici, based on a 1121-base pair (bp) fragment of P. capsici18,19. A previously developed LAMP primer from Dong et al. (2015) was used in comparison to the assay that was developed for this study20.
The LAMP assay is a relatively new form of molecular detection that has been demonstrated to be more rapid, sensitive, and specific than conventional polymerase chain reaction (PCR)21. In general, conventional PCR assays cannot detect under 500 copies (1.25 pg/µL); in contrast, previous studies have shown that the sensitivity of LAMP can be 10 to 1,000 times higher than conventional PCR and can easily detect even 1 fg/µL of genomic DNA22,23. Additionally, the assay can be carried out rapidly (often in 30 min) and on-site (in the field) by using a portable heating block for amplification and a colorimetric dye that changes color for a positive sample (removing the need for electrophoresis). In this study, we compared the sensitivity of PCR and LAMP assays using a filter extraction method. The proposed detection method allows researchers and extension agents to easily detect the presence of P. capsici spores from different water sources in less than two hours. The assay is proven to be more sensitive than conventional PCR and was validated in situ by detecting the presence of the pathogen in the irrigation water used by a grower. This detection method will allow growers to estimate the presence and population density of the pathogen in various water sources that are being used for irrigation, preventing devastating outbreaks and economic losses.
1. On-site detection of Phytophthora capsici from irrigation water using portable loop-mediated isothermal amplification
2. Determining the detection limit of zoospore concentration
Optimization of LAMP method
In this study, we detected the presence of Phytophthora capsici in irrigation water using a portable loop-mediated isothermal amplification (LAMP) assay. First, the proposed LAMP assay was optimized by testing different LAMP primer concentrations [F3, B3 (0.1–0.5 µM each); LF, LB (0.5–1.0 µM each) and FIP, BIP (0.8–2.4 µM each)], durations (30–70 min), and temperatures (55–70 °C). The final LAMP primer mix used i...
The testing of irrigation water for phytopathogens is a crucial step for growers using irrigation ponds and recycled water27. Irrigation ponds provide a reservoir and breeding ground for a number of phytopathogens as excess irrigation water is directed from the field to the pond carrying with it any pathogens that may have been present16,27. The traditional method for detection of a plant pathogens in a large water source is to set a bait ...
The authors have nothing to disclose or any conflicts of interest.
This work received the financial support of Georgia Commodity Commission for Vegetables project ID# FP00016659. The authors thank Dr. Pingsheng Ji, University of Georgia and Dr. Anne Dorrance, Ohio State University for providing pure cultures of Phytophthora spp. We also thank Li Wang and Deloris Veney for their technical assistance throughout the study.
Name | Company | Catalog Number | Comments |
Agarose gel powder | Thomas Scientific | C997J85 | |
Buchner funnel | Southern Labware | JBF003 | |
Bullet Blender | Next Advance | BBX24 | |
Centrifuge 5430 | Eppendorf | 22620509 | |
Chloroform | Fischer Scientific | C298-500 | |
CTAB solution | Biosciences | 786-565 | |
Dneasy Extraction Kit | Qiagen | 69104 | |
Filter Flask | United | FHFL1000 | |
Filter Paper | United Scientific Supplies | FPR009 | |
Gel Green 10000X | Thomas Scientific | B003B68 (1/EA) | |
Genie III | OptiGene | ||
Hand pump | Thomas Scientific | 1163B06 | |
Iso-amyl Alcohol | Fischer Scientific | BP1150-500 | |
LAVA LAMP master mix | Lucigen | 30086-1 | |
Magnetic bead DNA extraction | Genesig | genesigEASY-EK | |
Magnetic Separator | Genesig | genesigEASY-MR | |
polyvinylpyrrolidone | Sigma Aldrich | PVP40-500G | |
Primers | Sigma Aldrich | ||
Prism Mini Centrifuge | Labnet | C1801 | |
T100 Thermal Cycler | Bio-Rad | 1861096 | |
UV Gel Doc | Analytik Jena | 849-00502-2 | |
Warmstart Colorimetric Dye | Lucigen | E1800m | |
Wide Mini ReadySub-Cell GT Cell | Bio-Rad | 1704489EDU | |
70% isopropanol | Fischer Scientific | A451-1 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved