A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
CRISPR/Cas9 is increasingly used to characterize gene function in non-model organisms. This protocol describes how to generate knock-out lines of Culex pipiens, from preparing injection mixes, to obtaining and injecting mosquito embryos, as well as how to rear, cross, and screen injected mosquitoes and their progeny for desired mutations.
Culex mosquitoes are the major vectors of several diseases that negatively impact human and animal health including West Nile virus and diseases caused by filarial nematodes such as canine heartworm and elephantasis. Recently, CRISPR/Cas9 genome editing has been used to induce site-directed mutations by injecting a Cas9 protein that has been complexed with a guide RNA (gRNA) into freshly laid embryos of several insect species, including mosquitoes that belong to the genera Anopheles and Aedes. Manipulating and injecting Culex mosquitoes is slightly more difficult as these mosquitoes lay their eggs upright in rafts rather than individually like other species of mosquitoes. Here we describe how to design gRNAs, complex them with Cas9 protein, induce female mosquitoes of Culex pipiens to lay eggs, and how to prepare and inject newly laid embryos for microinjection with Cas9/gRNA. We also describe how to rear and screen injected mosquitoes for the desired mutation. The representative results demonstrate that this technique can be used to induce site-directed mutations in the genome of Culex mosquitoes and, with slight modifications, can be used to generate null-mutants in other mosquito species as well.
Culex mosquitoes are distributed throughout the temperate and tropical regions of the world and transmit several deadly viruses including West Nile virus1, St. Louis encephalitis2 as well as filarial nematodes that cause canine heartworm3 and elephantiasis4. Members of the Culex pipiens complex, which includes Cx. quinquefasciatus, Cx. pipiens pipiens and Cx. pipiens molestus, show striking variations in many aspects of their biology. For example, while Cx. quinquefasciatus and Cx. pipiens molestus are incapable of entering an overwintering dormancy5,6, Cx. pipiens pipiens display robust seasonal responses and enter diapause in response to short days7,8. Additionally, Cx. pipiens molestus tend to be more anthropophilic while Cx. pipiens and Cx. quinquefasciatus are more zoophilic6. However, in the United States and throughout many other places in the world, these species interbreed, which has strong implications for disease transmission as hybrids of the Cx. pipiens pipiens and Cx. pipiens molestus are opportunistic feeders and will bite both birds and humans9, thereby serving as bridge vectors for West Nile virus. Studying these and other fascinating aspects of the biology of Culex mosquitoes has been hampered, in part, because Culex mosquitoes are slightly more difficult to rear in the lab than Aedes mosquitoes, which produce quiescent and desiccation-resistant eggs10 and because functional molecular tools are not as well developed for Culex species.
CRISPR/Cas9 genome editing is a powerful technology that has been used to evaluate the biology of several important mosquito species11,12,13, including the Southern house mosquito, Culex quinquefasciatus14,15,16. This technology, developed by Jennifer Doudna and Emmanuelle Charpentier, exploits a natural bacterial defense against viruses by bacterially-derived, CRISPR-associated endonucleases (Cas proteins; see review by Van der Oost et al.17). When injected into animal embryos, the Cas9 proteins in combination with an appropriate guide RNA can produce double-stranded breaks within the genome. This is most frequently done by using the Cas9 protein that is complexed with guide RNAs, which directs endonuclease activity to a specific region of the genome. After the Cas9 protein has created a site-specific double-stranded break, the cellular machinery attempts to repair the break using one of two mechanisms. The first entails ligating the two ends together through non-homologous end joining (NHEJ), which is error-prone and often produces out-frame insertions and deletions in the genome that can result in non-functional proteins, thereby generating a knock-out mutation. Alternatively, the cellular machinery might use homology-directed repair (HDR) by finding similar sequences to correctly repair the break. The similar sequence may be provided by the second chromosome within the organism (see review18). However, if the repaired sequence exactly matches the original sequence, the Cas9 protein will be able to again cut the DNA. Alternatively, researchers can also include a donor plasmid that contains homologous sequences on either side of the cut site of the target sequence with an alternative repair sequence—often a fluorescent marker protein, modified version of the original gene, or other modification—that can be copied and inserted into the genome, or “knocked-in.”
Timing is critical when injecting embryos, and this is especially the case when using CRISPR/Cas9 genome editing to create mutations in insects. This is because the Cas9 protein and gRNAs have the greatest capacity to generate mutations only when the embryo is in its syncytial state, before cellular membranes have formed and when multiple nuclei are accessible within the embryo. For mosquitoes, nuclei reach the periphery ~2-4 hours after oviposition, depending on temperature19, and therefore successful microinjection must occur before this time. Additionally, the Cas9 protein will cut any nuclear DNA that it can access, such that the individual resulting from the injection will contain a mosaic of cells, some having the desired mutation, and others not. In order for these mutations to be successfully inherited, the Cas9 protein must cut DNA that resides in the germline that will give rise to the future eggs and sperm. To ensure that mutations are generated in the germline it is best to inject all materials close to the location of the pole cells within the embryo, which are the progenitors of the insect germline. The pole cells are located near the posterior end of Culex embryos20. In addition to injecting embryos, it is imperative to develop a careful plan for crossing and screening offspring in order to detect the desired mutation.
This protocol describes how to generate gRNAs and complex them with Cas9 protein to prepare injection mixes, as well as how to induce female mosquitoes of Culex pipiens to lay eggs and how to prepare and inject those eggs for CRISPR/Cas9-mediated genome editing. Additionally, we describe how to rear, cross and screen injected embryos and their progeny to confirm that the desired mutation has been obtained. Using this protocol, we generated null mutations for a gene of interest, cycle, in the Buckeye strain of Culex pipiens. This strain was originally established in 2013 from field-collected mosquitoes in Columbus, Ohio and is maintained by the Meuti lab. This protocol can be used for additional studies that require CRISPR/Cas9 genome editing in Culex mosquitoes, as well as other mosquito species, and, more generally, is relevant to employing CRISPR/Cas9 genome editing to any insect species.
In most research institutions, an approved Biosafety Protocol must be in place before transgenic insects are generated or maintained to ensure that genetically modified organisms will not escape or be removed from the laboratory facility. Additional government regulations might also apply. Before beginning a project of this nature, check all institutional policies and procedures to determine what documents and approvals are required.
1. Designing gRNAs and preparing injection mixes
2. Pulling and beveling needles
NOTE: Successful injections and survival of embryos requires sharp needles (Figure 1).
3. Blood-feeding the parental generation of mosquitoes
4. Inducing egg-laying in adult mosquitoes
5. Micro-manipulating freshly-laid Culex eggs
6. Injecting Culex embryos
7. Rearing injected embryos (F0) to adulthood and setting up crosses
8. Obtaining and rearing F1 mosquitoes and screening them for mutations
9. Obtaining and rearing F2 and F3 mosquitoes and screening them for mutations
Using the described protocol, we were able to successfully inject embryos of Cx. pipiens, and observed a high rate of survival among the injected embryos (~55%, Figure 1). Earlier trials had a lower percentage of survival, likely because the anterior of the egg follicle was attached to the medical dressing strip, preventing mosquito larvae from escaping from the chorion and successfully swimming into the water. Ensuring that the anterior end extends beyond the strip of medical dress...
This protocol presents methods to introduce specific mutations into the genome of Culex mosquitoes and can be used to edit the genome of other mosquitoes as well. The protocol is significant in that it provides specific details of not only how to prepare the injection materials, but also a detailed video overview of how to induce mosquitoes to lay eggs, as well as how to prepare and inject those eggs. We also summarize of how to take advantage of the biology of female Cx. pipiens to lay eggs in individu...
RH works for the Insect Transformation Facility, which provides services in insect genetic modification.
We thank Dr. David O’Brochta and all members of the Insect Genetic Technologies Coordination Research Network for the help and training that they provide to us and others on the implementation of genetic technologies. We especially thank Channa Aluvihare for optimizing the micromanipulation protocol to allow Culex embryos to be injected and hatch. We also thank Devante Simmons and Joseph Urso, undergraduate students working in the Meuti lab, for their assistance caring for and screening transgenic mosquitoes, and Zora Elmkami from the ITF for assistance rearing and prepping mosquitoes for injection. This work was supported by an Interdisciplinary Seeds grant from the Infectious Diseases Institute at OSU provided to MEM.
Name | Company | Catalog Number | Comments |
Artificial Membrane Feeder | Hemotek | SP5W1-3 | Company location: Blackburn, UK |
ATP | Invitrogen | 18330019 | Company location: Carlsbad, CA, USA |
Borosilicate glass mirocapillary tubes, 1 mm outer diameter | World Precision Instruments | 1B100-6 | Company Location: Sarasota, FL, USA |
BV10 Needle Beveler | Sutter Instruments | BV-10-B | Company Location: Nobato, CA, USA |
Whatman Circular filter paper (12.5 cm) | Sigma Aldrich | WHA1001125 | Company Location: St. Louis, MO, USA |
Conical tube (50 mL) | Thermo Fisher Scientific | 339652 | Company Location: Waltham, MA, USA |
Fisherbrand course filter paper with fast flow rate | Thermo Fisher Scientific | 09-800 | Company Location: Waltham, MA, USA |
Cover glass (24 x 40 mm) | Thermo Fisher Scientific | 50-311-20 | Company Location: Waltham, MA, USA |
Dental dam | Henry Schein Inc | 1010171 | Company Location: Melville, NY USA |
Scotch double-sided tape | Thermo Fisher Scientific | NC0879005 | Company Location: Waltham, MA, USA |
FemtoJet 4i microinjector | Eppendorf | 5252000021 | Company Location: Hamburg, Germany |
Glass vial (2 dram) | Thermo Fisher Scientific | 033401C | Company Location: Waltham, MA, USA |
Halocarbon oil | Sigma Aldrich | H8898-50ML | Company Location: St. Louis, MO, USA |
P-2000 Laser Needle Puller | Sutter Instruments | P-2000/G | Company Location: Nobato, CA, USA |
Parafilm | Thermo Fisher Scientific | 50-998-944 | Company Location: Waltham, MA, USA |
PC-100 Weighted Needle Puller | Narishige | PC-100 | This is compatabile with the earlier PC-10 model, which has been discontinued. Company Location: Amityville, NY, USA |
Phire Direct PCR Kit | Thermo Fisher Scientific | F140WH | Company Location: Waltham, MA, USA |
Kodak Photo-Flo (1%) | Thermo Fisher Scientific | 50-268-05 | Company Location: Waltham, MA, USA |
Quartz glass mirocapillary tubes, 1 mm outer diameter | Capillary Tube Supplies Limited | QGCT 1.0 | Company Location: Cornwall, UK |
Guide-it™ sgRNA Screening Kit | Takara, Bio USA | 632639 | This kit allows you to determine if gRNAs cut DNA sequences in vitro. Company Location: Mountain View, CA, USA |
Sigmacote | Sigma Aldrich | SL2-100ML | Company Location: St. Louis, MO, USA |
Small petri dishes (35X10 mm) | Thermo Fisher Scientific | 50-190-0273 | Company Location: Waltham, MA, USA |
Sodium citrate chicken blood | Lampire biologicals | 7201406 | Company Location: Everett, PA, USA |
Fisherbrand Square petri dish (10 cm x 10 cm) | Thermo Fisher Scientific | FB0875711A | Company Location: Waltham, MA, USA |
Tegaderm | Henry Schein Inc. | 7771180 | Company Location: Melville, NY USA |
Tropical fish food | Tetramin | N/A | |
Whatman filter paper | Thermo Fisher Scientific | 09-927-826 | Company Location: Waltham, MA, USA |
Whatman filter paper, 4.25 cm | Sigma Aldrich | 1001-042 | Company Location: St. Louis, MO, USA |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved