A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We describe the production of mixed cultures of astrocytes and oligodendrocyte precursor cells derived from fetal or adult neural stem cells differentiating into mature oligodendrocytes, and in vitro modeling of noxious stimuli. The coupling with a cell-based high-content screening technique builds a reliable and robust drug screening system.
The main hurdle in developing drug screening techniques for assessing the efficacy of therapeutic strategies in complex diseases is striking a balance between in vitro simplification and recreating the complex in vivo environment, along with the main aim, shared by all screening strategies, of obtaining robust and reliable data, highly predictive for in vivo translation.
In the field of demyelinating diseases, the majority of drug screening strategies are based on immortalized cell lines or pure cultures of isolated primary oligodendrocyte precursor cells (OPCs) from newborn animals, leading to strong biases due to the lack of age-related differences and of any real pathological condition or complexity.
Here we show the setup of an in vitro system aimed at modeling the physiological differentiation/maturation of neural stem cell (NSC)-derived OPCs, easily manipulated to mimic pathological conditions typical of demyelinating diseases. Moreover, the method includes isolation from fetal and adult brains, giving a system which dynamically differentiates from OPCs to mature oligodendrocytes (OLs) in a spontaneous co-culture which also includes astrocytes. This model physiologically resembles the thyroid hormone-mediated myelination and myelin repair process, allowing the addition of pathological interferents which model disease mechanisms. We show how to mimic the two main components of demyelinating diseases (i.e., hypoxia/ischemia and inflammation), recreating their effect on developmental myelination and adult myelin repair and taking all the cell components of the system into account throughout, while focusing on differentiating OPCs.
This spontaneous mixed model, coupled with cell-based high-content screening technologies, allows the development of a robust and reliable drug screening system for therapeutic strategies aimed at combating the pathological processes involved in demyelination and at inducing remyelination.
In the central nervous system (CNS), myelin forming cells (oligodendrocytes, OLs) and their precursors (oligodendrocyte precursor cells, OPCs) are responsible for developmental myelination, a process which occurs during the peri- and post-natal periods, and for myelin turnover and repair (remyelination) in adulthood1. These cells are highly specialized, interacting anatomically and functionally with all the other glial and neuronal components, making them a fundamental part of CNS structure and function.
Demyelinating events are involved in different CNS injuries and diseases2, and mainly act on OPCs and OLs by way of multifactorial mechanisms, both during development and adulthood. The undifferentiated precursors are driven by differentiating factors, mainly thyroid hormone (TH), in a synchronized process3 which leads the OPC to recognize and respond to specific stimuli which induce proliferation, migration to the non-myelinated axon, and differentiation into mature OLs which in turn develop the myelin sheath4. All these processes are finely controlled and occur in a complex environment.
Due to the complex nature of myelination, remyelination and demyelination events, there is a great need for a simplified and reliable in vitro method to study the underlying mechanisms and to develop new therapeutic strategies, focusing on the main cellular player: the OPC5.
For an in vitro system to be reliable, a number of factors need to be taken into account: the complexity of the cellular environment, age-related cell-intrinsic differences, physiological TH-mediated differentiation, pathological mechanisms, and the robustness of the data6. Indeed, the unmet need in the field is a model which mimics the complexity of the in vivo condition, not successfully achieved through the use of isolated pure OPC cultures. In addition, the two main components of demyelinating events, inflammation and hypoxia/ischemia (HI), directly involve other cell components that may indirectly affect the physiological differentiation and maturation of OPCs, an aspect which cannot be studied in over-simplified in vitro models.
Starting from a highly predictive culture system, the subsequent and more general challenge is the production of robust and reliable data. In this context, cell-based high-content screening (HCS) is the most suitable technique7, since our aim is firstly to analyze the entire culture in an automatic workflow, avoiding the bias of choosing representative fields, and secondly to obtain the automatic and simultaneous generation of imaging-based high-content data8.
Given that the main need is to achieve the best balance between in vitro simplification and in vivo-mimicking complexity, here we present a highly reproducible method for obtaining OPCs derived from neural stem cells (NSCs) isolated from the fetal forebrain and the adult sub-ventricular zone (SVZ). This in vitro model encompasses the entire OPC differentiation process, from multipotent NSC to mature/myelinating OL, in a physiological TH-dependent manner. The resulting culture is a dynamically differentiating/maturating system which results in a spontaneous co-culture consisting mainly of differentiating OPCs and astrocytes, with a low percentage of neurons. This primary culture better mimics the complex in vivo environment, while its stem cell derivation allows simple manipulations to be performed to obtain the cell lineage enrichment desired.
On the contrary to other drug screening strategies using cell lines or pure cultures of primary OPCs, the method described here allows the study of the effect of pathological interferents or therapeutic molecules in a complex environment, without losing the focus on the desired cell type. The HCS workflow described permits an analysis of cell viability and lineage specification, as well as lineage-specific cell death and morphological parameters.
All animal protocols described herein were carried out according to European Community Council Directives (86/609/EEC) and comply with the guidelines published in the NIH Guide for the Care and Use of Laboratory Animals.
1. Solutions and reagents
2. Dissection and NSC isolation
NOTE: Fetal and adult NSCs were isolated from E13.5 fetal forebrain or 2.5-month-old adult sub-ventricular zone (SVZ), following the Ahlenius and Kokaia protocol9 with modifications.
3. Primary neurospheres
4. Oligospheres
NOTE: Oligodendrocyte differentiation is performed following the Chen protocol10 with modifications.
5. Plate coating
6. Cell seeding
7. OPC differentiation induction
8. Induction of inflammation-mediated differentiation block
9. Induction of oxygen-glucose deprivation cell death
10. Immunocytochemistry
11. HCS analysis of cell viability, lineage composition, and lineage-specific cell death
NOTE: The HCS representative images and workflow are shown in Figure 2A,B.
The first phase of the culture may vary in duration, depending on seeding density and on whether the spheres are of fetal or adult origin. Moreover, oligospheres display a reduced population doubling compared to neurospheres (Figure 1B). Moreover, spheres production from adult tissue is slower and it may take 2–3 weeks to generate oligospheres compared to fetal that may take 1–2 weeks, depending on the seeding density.
Once seeded, the entire different...
The complex nature of myelination/remyelination processes and demyelinating events makes the development of predictive in vitro systems extremely challenging. The most widely used in vitro drug screening systems are mostly human cell lines or primary pure OL cultures, with increasing use of more complex co-cultures or organotypic systems15. Even if such systems are coupled with high content technologies, pure OL cultures remain the method of choice when developing screening platforms
The authors have nothing to disclose.
Supported by MIUR National Technology Clustersproject IRMI (CTN01_00177_888744), and Regione Emilia-Romagna, Mat2Rep, POR-FESR 2014-2020.
Special thanks to IRET Foundation for hosting the experimental work.
Name | Company | Catalog Number | Comments |
96-well plates - untreated | NUNC | 267313 | |
B27 supplement (100x) | GIBCO | 17504-044 | |
basic Fibroblast Growth Factor (bFGF) | GIBCO | PHG0024 | |
BSA | Sigma-Aldrich | A2153 | |
Ciliary Neurotropic Factor (CNTF) | GIBCO | PHC7015 | |
DMEM w/o glucose | GIBCO | A14430-01 | |
DMEM/F12 GlutaMAX | GIBCO | 31331-028 | |
DNase | Sigma-Aldrich | D5025-150KU | |
EBSS | GIBCO | 14155-048 | |
Epidermal Growth Factor (EGF) | GIBCO | PHG6045 | |
HBSS | GIBCO | 14170-088 | |
HEPES | GIBCO | 15630-056 | |
Hyaluronidase | Sigma-Aldrich | H3884 | |
IFN-γ | Origene | TP721239 | |
IL-17A | Origene | TP723199 | |
IL-1β | Origene | TP723210 | |
IL-6 | Origene | TP723240 | |
laminin | GIBCO | 23017-051 | |
N-acetyl-L-cysteine | Sigma-Aldrich | A9165 | |
N2 supplement (50x) | GIBCO | 17502-048 | |
Non-enzymatic dissociation buffer | GIBCO | 13150-016 | |
PBS | GIBCO | 70011-036 | |
Penicillin / Streptomycin | Sigma-Aldrich | P4333 | |
Platelet Derived Growth Factor (PDGF-AA) | GIBCO | PHG0035 | |
poly-D,L-ornitine | Sigma-Aldrich | P4957 | |
TGF-β1 | Origene | TP720760 | |
TNF-α | Origene | TP723451 | |
Triiodothyronine | Sigma-Aldrich | T2752-1G | |
Trypsin | Sigma-Aldrich | T1426 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved