JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biochemistry

Fluorescent Leakage Assay to Investigate Membrane Destabilization by Cell-Penetrating Peptide

Published: December 19th, 2020

DOI:

10.3791/62028

1PHYMEDEXP, INSERM U1046 - CNRS UMR 9214 - University of Montpellier

The fluorescence leakage assay is a simple method that enables the investigation of peptide/membrane interactions in order to understand their involvement in several biological processes and especially the ability of cell-penetrating peptides to disturb phospholipids bilayers during a direct cellular translocation process.

Cell-penetrating peptides (CPPs) are defined as carriers that are able to cross the plasma membrane and to transfer a cargo into cells. One of the main common features required for this activity resulted from the interactions of CPPs with the plasma membrane (lipids) and more particularly with components of the extracellular matrix of the membrane itself (heparan sulphate). Indeed, independent of the direct translocation or the endocytosis-dependent internalization, lipid bilayers are involved in the internalization process both at the level of the plasma membrane and at the level of intracellular traffic (endosomal vesicles). In this article, we present a detailed protocol describing the different steps of a large unilamellar vesicles (LUVs) formulation, purification, characterization, and application in fluorescence leakage assay in order to detect possible CPP-membrane destabilization/interaction and to address their role in the internalization mechanism. LUVs with a lipid composition reflecting the plasma membrane content are generated in order to encapsulate both a fluorescent dye and a quencher. The addition of peptides in the extravesicular medium and the induction of peptide-membrane interactions on the LUVs might thus induce in a dose-dependent manner a significant increase in fluorescence revealing a leakage. Examples are provided here with the recently developed tryptophan (W)- and arginine (R)-rich Amphipathic Peptides (WRAPs), which showed a rapid and efficient siRNA delivery in various cell lines. Finally, the nature of these interactions and the affinity for lipids are discussed to understand and to improve the membrane translocation and/or the endosomal escape.

After their discovery in the nineties, cell-penetrating peptides (CPPs) were developed to promote an efficient cellular delivery of cargoes through the plasma membrane1,2. CPPs are usually short peptides, generally 8 to 30 amino acids, having a wide variety of origins. They were first defined as "direct-translocating" carriers, meaning they were able to cross the plasma membrane and to transfer a cargo into cells independently of any endocytotic pathway neither energy requirement nor receptor involvement. However, further investigations revealed that these first observations mainly came from fluorescen....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Preparation of Large Unilamellar Vesicles (LUVs)

  1. Prepare LUVs for their use as cell membrane mimics for fluorescence leakage assay.
  2. Mix with a Hamilton glass syringe phosphatidylcholine (DOPC, 786.11 g/mol), sphingomyelin (SM, 760.22 g/mol) and Cholesterol (Chol, 386.65 g/mol) at the molar ratio 4:4:2. The lipid solution is obtained from a stock solution of each lipid solubilized in a methanol/chloroform (3/1; volume/volume) solvent at 25 mg/mL in a 25 mL glass round-bottom flask. Based on 4 .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The principle of the fluorescence leakage assay is shown in the Figure 1. In detail, large unilamellar vesicles (LUVs) encapsulating a fluorescent dye and a quencher (no fluorescence signal) are treated with the biomolecule of interest. Due to the interaction of the peptide with lipid membranes, which could imply membrane permeability, reorganization or even rupture, the fluorescence dye and the quencher are released from the LUVs. Subsequent dilutions in the.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The presented fluorescence leakage assay is a simple and fast method to address membrane destabilization by cell-penetrating peptide. Easy to do, it also enables an indirect comparison between different membrane-interacting peptides or other membrane-interacting molecules. Concerning critical steps of the protocol, as this assay provides relative values between the baseline (LUVs alone) and maximal fluorescence release (Triton condition), we usually evaluate the concentration of LUVs using the phospholipid quantification.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors would like to thank Emilie Josse for the critical review of the manuscript. This work was supported by the foundation "La Ligue contre le Cancer", the "Fondation ARC pour la Recherche sur le Cancer", and the "Centre National de la Recherche Scientifique" (CNRS).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
25 mL glass round-bottom flask Pyrex
8-aminonaphthalene-1, 3, 6-trisulfonic acid, disodium salt (ANTS) Invitrogen A350 Protect from light 
Chloroform  Sigma-Aldrich 288306
Cholesterol Sigma-Aldrich C8667
DOPC (dioleoylphosphatidylcholine) Avanti Polar 850375P Protect from air
Extruder Avanti Polar 610000
Fluorimeter PTI Serlabo
50 µL glass syringe Hamilton 705N
HEPES Sigma-Aldrich H3375
LabAssay Phospholipid  WAKO  296-63801
liquid chromatography column Sigma-Aldrich
Methanol Carlo Erba 414902
Nuclepore polycarbonate membrane (0.1 µm pore size, 25 mm diameter) Whatman 800309
polystyrene cuvette, 10 x 10 x 45 mm Grener Bio-One 614101
polystyrene semi-micro cuvette, DLS Fisher Scientific FB55924
p-xylene-bispyridinium bromide (DPX) Invitrogen X1525 Protect from light 
quartz fluorescence cuvette Hellma 109.004F-QS
rotavapor system  Heidolph Z334898
Sephadex G-50 resin Amersham 17-0042-01
Sodium azide (NaN3) Sigma-Aldrich S2002
Sodium chlorid (NaCl) Sigma-Aldrich S5886
Sonicator bath USC300T VWR 142-6001
Sphingomyelin Avanti Polar 860062P Protect from air
Triton X-100  Eromedex 2000-B
Zetaziser NanoZS  Malvern ZEN3500

  1. Langel, U. . Handbook of Cell-Penetrating Peptides. , (2006).
  2. Deshayes, S., Morris, M. C., Divita, G., Heitz, F. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cellular and Molecular Life Sciences CMLS. 62 (16), 1839-1849 (2005).
  3. Richard, J., et al. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. The Journal of Biological Chemistry. , (2003).
  4. Jones, A., Sayers, E. Cell entry of cell penetrating peptides: tales of tails wagging dogs. Journal of Controlled Release Official Journal of the Controlled Release Society. , (2012).
  5. Tünnemann, G., et al. Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. Journal of Peptide Science. 14 (4), 469-476 (2008).
  6. Jiao, C. -. Y., et al. Translocation and endocytosis for cell-penetrating peptide internalization. Journal of Biological Chemistry. 284 (49), 33957-33965 (2009).
  7. Deshayes, S., et al. Deciphering the internalization mechanism of WRAP:siRNA nanoparticles. Biochimica Et Biophysica Acta. Biomembranes. 1862 (6), 183252 (2020).
  8. Konate, K., et al. Optimisation of vectorisation property: A comparative study for a secondary amphipathic peptide. International Journal of Pharmaceutics. 509 (1-2), 71-84 (2016).
  9. Lehto, T., et al. Cellular trafficking determines the exon skipping activity of Pip6a-PMO in mdx skeletal and cardiac muscle cells. Nucleic Acids Research. 42 (5), 3207-3217 (2014).
  10. Hoyer, J., Neundorf, I. Peptide vectors for the nonviral delivery of nucleic acids. Accounts of Chemical Research. 45 (7), 1048-1056 (2012).
  11. Milletti, F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discovery Today. 17 (15-16), 850-860 (2012).
  12. Mueller, J., Kretzschmar, I., Volkmer, R., Boisguerin, P. Comparison of cellular uptake using 22 CPPs in 4 different cell lines. Bioconjugate Chemistry. 19 (12), 2363-2374 (2008).
  13. Ramaker, K., Henkel, M., Krause, T., Röckendorf, N., Frey, A. Cell penetrating peptides: a comparative transport analysis for 474 sequence motifs. Drug Delivery. 25 (1), 928-937 (2018).
  14. Maget-Dana, R. The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochimica Et Biophysica Acta. 1462 (1-2), 109-140 (1999).
  15. Alves, A. C., Ribeiro, D., Nunes, C., Reis, S. Biophysics in cancer: The relevance of drug-membrane interaction studies. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1858 (9), 2231-2244 (2016).
  16. Konate, K., et al. Peptide-based nanoparticles to rapidly and efficiently "Wrap 'n Roll" siRNA into cells. Bioconjugate Chemistry. 30 (3), 592-603 (2019).
  17. Seisel, Q., Pelletier, F., Deshayes, S., Boisguerin, P. How to evaluate the cellular uptake of CPPs with fluorescence techniques: Dissecting methodological pitfalls associated to tryptophan-rich peptides. Biochimica Et Biophysica Acta. Biomembranes. 1861 (9), 1533-1545 (2019).
  18. Derossi, D., Joliot, A. H., Chassaing, G., Prochiantz, A. The third helix of the Antennapedia homeodomain translocates through biological membranes. Journal of Biological Chemistry. 269 (14), 10444-10450 (1994).
  19. Takayama, M., Itoh, S., Nagasaki, T., Tanimizu, I. A new enzymatic method for determination of serum choline-containing phospholipids. Clinica Chimica Acta; International Journal of Clinical Chemistry. 79 (1), 93-98 (1977).
  20. Notman, R., Noro, M., O'Malley, B., Anwar, J. Molecular basis for Dimethylsulfoxide (DMSO) action on lipid membranes. Journal of the American Chemical Society. 128 (43), 13982-13983 (2006).
  21. Konate, K., et al. Insight into the cellular uptake mechanism of a secondary amphipathic cell-penetrating peptide for siRNA delivery. Biochemistry. 49 (16), 3393-3402 (2010).
  22. Vaissière, A., et al. A retro-inverso cell-penetrating peptide for siRNA delivery. Journal of Nanobiotechnology. 15 (1), 34 (2017).
  23. Eiríksdóttir, E., Konate, K., Langel, &. #. 2. 2. 0. ;., Divita, G., Deshayes, S. Secondary structure of cell-penetrating peptides controls membrane interaction and insertion. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1798 (6), 1119-1128 (2010).
  24. Ziegler, A., Li Blatter, X., Seelig, A., Seelig, J. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Biochemistry. 42 (30), 9185-9194 (2003).
  25. Thorén, P. E. G., Persson, D., Karlsson, M., Nordén, B. The Antennapedia peptide penetratin translocates across lipid bilayers - the first direct observation. FEBS Letters. 482 (3), 265-268 (2000).
  26. Mishra, A., et al. Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proceedings of the National Academy of Sciences. 108 (41), 16883-16888 (2011).
  27. Rouser, G., Fleischer, S., Yamamoto, A. Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 5 (5), 494-496 (1970).
  28. Bartlett, G. R. Phosphorus assay in column chromatography. Journal of Biological Chemistry. 234 (3), 466-468 (1959).
  29. Stewart, J. C. M. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Analytical Biochemistry. 104 (1), 10-14 (1980).
  30. Spinella, S. A., Nelson, R. B., Elmore, D. E. Measuring peptide translocation into large unilamellar vesicles. Journal of Visualized Experiments: JoVE. (59), e3571 (2012).
  31. Wimley, W. C. Determining the effects of membrane-interacting peptides on membrane integrity. Cell-Penetrating Peptides. 1324, 89-106 (2015).
  32. Bárány-Wallje, E., Gaur, J., Lundberg, P., Langel, U., Gräslund, A. Differential membrane perturbation caused by the cell penetrating peptide Tp10 depending on attached cargo. FEBS Letters. 581 (13), 2389-2393 (2007).
  33. van Rooijen, B. D., Claessens, M. M. A. E., Subramaniam, V. Membrane permeabilization by oligomeric α-Synuclein: in search of the mechanism. PloS One. 5 (12), 14292 (2010).
  34. Hassane, F. S., et al. Insights into the cellular trafficking of splice redirecting oligonucleotides complexed with chemically modified cell-penetrating peptides. Journal of Controlled Release: Official Journal of the Controlled Release Society. 153 (2), 163-172 (2011).
  35. Asciolla, J. J., Renault, T. T., Chipuk, J. E. Examining BCL-2 family function with large unilamellar vesicles. Journal of Visualized Experiments: JoVE. (68), e4291 (2012).
  36. Grewer, C., Gameiro, A., Mager, T., Fendler, K. Electrophysiological characterization of membrane transport proteins. Annual Review of Biophysics. 42 (1), 95-120 (2013).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved