Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We report a simple, time-efficient and high-throughput fluorescence spectroscopy-based assay for the quantification of actin filaments in ex vivo biological samples from brain tissues of rodents and human subjects.

Abstract

Actin, the major component of cytoskeleton, plays a critical role in the maintenance of neuronal structure and function. Under physiological states, actin occurs in equilibrium in its two forms: monomeric globular (G-actin) and polymerized filamentous (F- actin). At the synaptic terminals, actin cytoskeleton forms the basis for critical pre- and post-synaptic functions. Moreover, dynamic changes in the actin polymerization status (interconversion between globular and filamentous forms of actin) are closely linked to plasticity-related alterations in synaptic structure and function. We report here a modified fluorescence-based methodology to assess polymerization status of actin in ex vivo conditions. The assay employs fluorescently labelled phalloidin, a phallotoxin that specifically binds to actin filaments (F-actin), providing a direct measure of polymerized filamentous actin. As a proof of principle, we provide evidence for the suitability of the assay both in rodent and post-mortem human brain tissue homogenates. Using latrunculin A (a drug that depolymerizes actin filaments), we confirm the utility of the assay in monitoring alterations in F-actin levels. Further, we extend the assay to biochemical fractions of isolated synaptic terminals wherein we confirm increased actin polymerization upon stimulation by depolarization with high extracellular K+.

Introduction

Cytoskeletal protein actin is involved in multiple cellular functions, including structural support, cellular transport, cell motility and division. Actin occurs in equilibrium in two forms: monomeric globular actin (G-actin) and polymerized filamentous actin (F-actin). Rapid changes in the polymerization status of actin (interconversion between its G- and F- forms) result in rapid filament assembly and disassembly and underlie its regulatory roles in cellular physiology. Actin forms the major component of the neuronal cytoskeletal structure and influences a wide range of neuronal functions1,2. Of note, the ac....

Protocol

All experimental procedures were carried out in accordance with the regulations of the University of Otago Committee on Ethics in the Care and Use of Laboratory Animals (Ethics Protocol No. AUP95/18 and AUP80/17) and New Zealand legislature. Human brain tissues were obtained from the Neurological Tissue Bank of Hospital Clínic-IDIBAPS BioBank in Barcelona, Spain. All tissue collection protocols were approved by the Ethics Committee of Hospital Clínic, Barcelona, and informed consent was obtained from the famili.......

Representative Results

Linearity of the assay for evaluation of F-actin levels
First, a standard curve for the linear increase in fluorescence of Alexa Fluor 647 Phalloidin was ascertained and was repeated for each set of experiments (Figure 1). To investigate the linear range of the assay, different amounts of brain homogenates from rodents (Figures 2A and 2B) and post-mortem human subjects (Figure 3A and 3B) w.......

Discussion

The assay described here, essentially adapted from a previous study30 with modifications, employs a phallotoxin, phalloidin tagged with a fluorescent label. Fluorescent phalloidin analogs are considered to be the gold standard for staining actin filaments in fixed tissues47,48,49. In fact, they are the oldest tools to specifically identify actin filaments50 and still remain the mos.......

Acknowledgements

This work was supported by the Neurological Foundation of New Zealand (1835-PG), the New Zealand Health Research Council (#16-597) and the Department of Anatomy, University of Otago, New Zealand. We are indebted to the Neurological Tissue Bank of HCB-IDIBAPS BioBank (Spain) for human brain tissues. We thank Jiaxian Zhang for her help in recording and editing of the video.

....

Materials

NameCompanyCatalog NumberComments
3.5 mL, open-top thickwall polycarbonate tubeBeckman Coulter349622For gradient centrifugation (synaptosome prep)
Alexa Fluor 647 PhalloidinThermo Fisher ScientificA22287F-actin specific ligand
Antibody against  b-actinSanta Cruz BiotechnologySc-47778For evaluation of total actin levels by immunoblotting
Antibody against GAPDHAbcamAb181602For evaluation of GAPDH levels by immunoblotting
Bio-Rad Protein Assay Dye Reagent ConcentrateBio-Rad5000006Bradford based protein estimation
Calcium chloride dihydrate (CaCl2·2H2O)Sigma-AldrichC3306Krebs buffer component
cOmplete, Mini, EDTA-free Protease Inhibitor CocktailSigma-Aldrich4693159001For inhibition of endogenous protease activity during sample preparation
Corning 96-well Clear Flat Bottom PolystyreneCorning3596For light-scattering measurements
D-(+)-GlucoseSigma-AldrichG8270Krebs buffer component
Dimethyl sulfoxideSigma-AldrichD5879Solvent for phalloidin and latrunculin A
Fluorescent flatbed scanner (Odyssey Infrared Scanner)Li-Cor BiosciencesFor detection of immunoreactive signals on immunoblots
Glutaraldehyde solution (25% in water) Grade IISigma-AldrichG6257Fixative
HEPESSigma-AldrichH3375Buffer ingredient for sample preparation and Krebs buffer component
Latrunculin ASigma-AldrichL5163Depolymerizer of actin filaments
Magnesium chloride hexahydrate (MgCl2·6H2O)Sigma-AldrichM2670Krebs buffer component
Microplates
Mitex membrane filter 5 mmMilliporeLSWP01300Preparation of synaptoneurosomes
Nunc F96 MicroWell Black PlateThermo Fisher Scientific237105For fluorometric measurements
Nylon net filter 100 mmMilliporeNY1H02500Preparation of synaptoneurosomes
Phosphatase Inhibitor Cocktail IVAbcamab201115For inhibition of endogenous phosphatase activity during sample preparation
Potassium chloride (KCl)Sigma-AldrichP9541Krebs buffer component and for depolarization of synaptic terminals
Potassium phosphate monobasic ((KH2PO4)Sigma-AldrichP9791Krebs buffer component
Sodium borohydride (NaBH4)Sigma-Aldrich71320Component of Permeabilization buffer
Sodium chloride (NaCl)LabServ (Thermo Fisher Scientific)BSPSL944Krebs buffer component
Sodium hydrogen carbonate (NaHCO3)LabServ (Thermo Fisher Scientific)BSPSL900Krebs buffer component
SpectraMax i3xMolecular DevicesFor fluorometric measurements
SucroseFisher ChemicalS/8600/60Buffer ingredient for sample preparation
Swimnex Filter HolderMilliporeSx0001300Preparation of synaptoneurosomes
Tissue grinder 5 mL Potter-ElvehjemDuran Wheaton Kimble358034For tissue homogenization
Triton X-100Sigma-AldrichX100Component of Permeabilization buffer
Trizma baseSigma-AldrichT6066Buffer ingredient for sample preparation

References

  1. Penzes, P., Rafalovich, I. Regulation of the actin cytoskeleton in dendritic spines. Advances in Experimental Medicine and Biology. 970, 81-95 (2012).
  2. Venkatesh, K., Mathew, A., Koushika, S. P. Role of actin in organelle trafficking in neurons.

Explore More Articles

ActinCytoskeletonF actinG actinPolymerizationFluorescence SpectroscopyPhalloidinSynaptic TerminalsSynaptosomesSynaptoneurosomesBrain TissueNeuropathologyNeuronal Physiology

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved