JoVE Logo
Faculty Resource Center

Sign In

Abstract

Medicine

Advanced Cardiac Rhythm Management by Applying Optogenetic Multi-Site Photostimulation in Murine Hearts

Published: August 26th, 2021

DOI:

10.3791/62335

1Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, 2Research Electronics Department, Max Planck Institute for Dynamics and Self-Organization, 3Department of Pharmacology and Toxicology, University Medical Center Goettingen, 4Institute for Nonlinear Dynamics, Georg-August-University Goettingen, 5Department of Cardiology and Pneumology, University Medical Center Goettingen, 6German Center for Cardiovascular Research, DZHK e.V., partner site Goettingen, 7Laboratory Animal Science Unit, German Primate Center Leibniz Institute for Primate Research, 8Department of Microsystems Engineering (IMTEK), University of Freiburg, 9Cluster of Excellence BrainLinks-BrainTools, University of Freiburg
* These authors contributed equally

Ventricular tachyarrhythmias are a major cause of mortality and morbidity worldwide. Electrical defibrillation using high-energy electric shocks is currently the only treatment for life-threatening ventricular fibrillation. However, defibrillation may have side-effects, including intolerable pain, tissue damage, and worsening of prognosis, indicating a significant medical need for the development of more gentle cardiac rhythm management strategies. Besides energy-reducing electrical approaches, cardiac optogenetics was introduced as a powerful tool to influence cardiac activity using light-sensitive membrane ion channels and light pulses. In the present study, a robust and valid method for successful photostimulation of Langendorff perfused intact murine hearts will be described based on multi-site pacing applying a 3 x 3 array of micro light-emitting diodes (micro-LED). Simultaneous optical mapping of epicardial membrane voltage waves allows the investigation of the effects of region-specific stimulation and evaluates the newly induced cardiac activity directly on-site. The obtained results show that the efficacy of defibrillation is strongly dependent on the parameters chosen for photostimulation during a cardiac arrhythmia. It will be demonstrated that the illuminated area of the heart plays a crucial role for termination success as well as how the targeted control of cardiac activity during illumination for modifying arrhythmia patterns can be achieved. In summary, this technique provides a possibility to optimize the on-site mechanism manipulation on the way to real-time feedback control of cardiac rhythm and, regarding the region specificity, new approaches in reducing the potential harm to the cardiac system compared to the usage of non-specific electrical shock applications.

Tags

Keywords Optogenetics

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved