A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here we describe an optimized retinal organoid induction system, which is suitable for various human pluripotent stem cell lines to generate retinal tissues with high reproducibility and efficiency.
Retinal degenerative diseases are the main causes of irreversible blindness without effective treatment. Pluripotent stem cells that have the potential to differentiate into all types of retinal cells, even mini-retinal tissues, hold huge promises for patients with these diseases and many opportunities in disease modeling and drug screening. However, the induction process from hPSCs to retinal cells is complicated and time-consuming. Here, we describe an optimized retinal induction protocol to generate retinal tissues with high reproducibility and efficiency, suitable for various human pluripotent stem cells. This protocol is performed without the addition of retinoic acid, which benefits the enrichment of cone photoreceptors. The advantage of this protocol is the quantification of EB size and plating density to significantly enhance the efficiency and repeatability of retinal induction. With this method, all major retinal cells sequentially appear and recapitulate the main steps of retinal development. It will facilitate downstream applications, such as disease modeling and cell therapy.
Retinal degenerative diseases (RDs), such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), are characterized by the dysfunction and death of photoreceptor cells and typically lead to irreversible vision loss without effective ways to cure1. The mechanism underlying these diseases is largely unknown partially due to lack of human disease models2. Over the past decades, significant advances have been accomplished in regenerative medicine through stem cell technology. Many researchers, including ourselves, have shown that human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), can differentiate into all types of retinal cells, even mini-retinal tissues through various differentiation approaches3,4,5,6,7,8,9,10,11, providing huge potential in disease modeling and cell therapy12,13,14.
However, the induction process from hPSCs to retinal cells is highly complicated and time-consuming with low repeatability, which requires researchers with rich experience and high skills. During the complex and dynamic induction process, a number of factors will impact the yield of retinal tissues15,16,17. Also, different induction methods often vary considerably in timing and robust expression of retinal markers, which might confound the sample collection and data interpretation3. Therefore, a straightforward protocol of retinal differentiation from hPSCs with step-by-step guidance would be in demand.
Here, based on our published studies18,19,20,21, an optimized retinal induction protocol to generate retinal organoids (ROs) with rich cone photoreceptors from hPSCs is described, which does not require the supplement of retinoic acid (RA). This protocol focuses on the description of the multi-step method to generate neural retina and RPE. EB formation is the essential part of the early induction stage. Both size and plating density of EBs are quantitatively optimized, which scientifically enhances the yield of retinal tissues and promotes repeatability. In the second part of the induction, optic vesicles (OVs) self-organize in the adherence culture and ROs form in the suspension culture; the time courses and efficiencies of this part vary considerably in different hPSC lines. The maturation and specification of retinal cells in ROs mainly occur in the middle and late stage of induction. Without the addition of RA, mature photoreceptors with both rich cones and rods can be produced.
The purpose of this protocol is to quantitatively describe and detail each step for inexperienced researchers to repeat. Various hPSC lines have been successfully induced into ROs by this protocol with a robust yield of cone-rich retinal tissues and high repeatability. HPSCs-derived ROs with this protocol can recapitulate the main steps of retinal development in vivo, and survive long-term, which facilitates downstream applications, such as disease modeling, drug screening, and cell therapy.
1. Culture and expansion of hPSCs
2. Retinal differentiation from hPSCs
NOTE: When the colonies reach ~80% confluence (Figure 1B), they can be guided to differentiate into retinal organoids following the protocol schematized in Figure 1A. To ensure the hPSCs have high quality and good yield, regularly evaluate the pluripotency with molecular markers such as OCT4 or NANOG using IFC or QPCR. HPSCs should be discarded if differentiated cells account for more than 5% of the total cells. Check for mycoplasma contamination with a mycoplasma detection kit according to the manufacturer's instructions. Use only mycoplasma-free hPSCs as mycoplasma can alter the differentiation capability of hPSCs.
3. Retinal development and maturation
NOTE: In this protocol, serum is required to keep the ROs grow and mature for long-term culture.
The retinal induction process in this protocol mimics the development of human fetal retina. To initiate the retinal differentiation, hPSCs were dissociated into small clumps and cultured in suspension to induce the formation of EBs. On D1, the uniformed cell aggregates or EBs formed (Figure 1C). The culture medium was gradually transitioned into NIM. On D5, EBs were plated onto the ECM-coated culture dishes. Cells gradually migrated out of the EBs (Figure 1D). ...
In this multi-step retinal induction protocol, hPSCs were guided step by step to gain the retinal fate, and self-organized into retinal organoids containing laminated NR and RPE. During the differentiation, hPSCs recapitulated all major steps of human retinal development in vivo, from EF, OV, and RPE, to retinal lamination, generating all subtypes of retinal cells, including retinal ganglion cells, amacrine cells, bipolar cells, rod, and cone photoreceptors, and muller glial cells in a spatial and temporal order...
Xiufeng Zhong is the patent inventor related to the generation of retinal cells from human pluripotent stem cells.
This study was supported by the National Key R&D Program of China (2016YFC1101103, 2017YFA0104101), the Guangzhou Science and Technology Project Fund (201803010078), the Science & Technology Project of Guangdong Province (2017B020230003), the Natural Science Foundation (NSF) of China (81570874, 81970842), Hundred talent program of Sun Yat-sen University (PT1001010), and the Fundamental Research Funds of the State Key Laboratory of Ophthalmology.
Name | Company | Catalog Number | Comments |
(−)-Blebbistatin | Sigma | B0560-5mg | ROCK-inhibitor |
1 ml tips | Kirgen | KG1313 | 1 ml |
10 ml pipette | Sorfa | 3141001 | Pipette |
100 mm Tissue culture | BIOFIL | TCD000100 | 100 mm Petri dish |
100 mm Tissue culture | Falcon | 353003 | 100 mm Petri dish |
15 ml Centrifuge tubes | BIOFIL | CFT011150 | Centrifuge tubes |
35 mm Tissue culture dishes | Falcon | 353001 | 35 mm Petri dish |
5 ml pipette | Sorfa | 313000 | Pipette |
50 ml Centrifuge tubes | BIOFIL | CFT011500 | Centrifuge tubes |
6 wells tissue culture plates | Costar | 3516 | Culture plates |
Anti-AP2α Antibody | DSHB | 3b5 | Primary antibody |
ANTIBIOTIC ANTIMYCOTIC 100X | Gibco | 15240062 | Antibiotic-Antimycotic |
Anti-ISL1 Antibody | Boster | BM4446 | Primary antibody |
Anti-Ki67 Antibody | Abcam | ab15580 | Primary antibody |
Anti-L/M opsin Antibody | gift from Dr. jeremy | / | Primary antibody |
Anti-PAX6 Antibody | DSHB | pax6 | Primary antibody |
Anti-rabbit 555 | Invitrogen | A31572 | Donkey anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 555 |
Anti-Recoverin Antibody | Millipore | ab5585 | Primary antibody |
Anti-Rhodopsin Antibody | Abcam | ab5417 | Primary antibody |
Anti-sheep 555 | Invitrogen | A21436 | Donkey anti-Sheep IgG (H+L) Secondary Antibody, Alexa Fluor 555 |
Anti-SOX9 Antibody | Abclonal | A19710 | Primary antibody |
Anti-VSX2 Antibody | Millipore | ab9016 | Primary antibody |
B-27 supplement W/O VIT A (50X) | Gibco | 12587010 | Supplement |
Cryotube vial | Thermo scientific-NUNC | 375418 | 1.8 ml |
DAPI | DOJINDO | D532 | 4',6-Diamidino-2-phenylindole dihydrochloride; multiple suppliers |
Dimethyl sulphoxide(DMSO) Hybri-max | Sigma | D2650-100ML | Multiple suppliers |
DMEM | Gibco | C11995500BT | Medium |
DMEM /F12 | Gibco | C11330500BT | Medium |
EDTA | Invitrogen | 15575-020 | 0.5 M PH 8.0 |
FBS | NATOCOR | SFBE | Serum |
Filter | Millipore | SLGP033RB | 0.22μm, sterile Millex filter |
GlutaMax, 100X | Gibco | 35050061 | L-alanyl-L-glutamine |
Heparin | Sigma | H3149 | 2 mg/ml in PBS to use |
Matrigel, 100x | Corning | 354277 | Extracellular matrix (ECM) |
MEM Non-Essential Amino Acids Solution (100X) | Gibco | 11140050 | MEM NEAA |
mTeSR1 | STEM CELL | 85850 | hPSCs maintenance medium (MM) |
N2 supplement | Gibco | 17502048 | Supplement |
Phosphate-buffered saline (PBS) buffer | GNM | GNM10010 | Without Ca+,Mg+,PH7.2±0.1 0.1M |
Taurine | Sigma | T0625 | Supplement |
Ultra-low attachment culture dishes 100mm petri dish, low-attachment | Corning | CLS3262-20EA | Petri dish |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved