Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol highlights a method to rapidly assess the biocompatibility of a crystalline nanocellulose (CNC)/agarose composite hydrogel biomaterial ink with mouse bone marrow-derived mast cells in terms of cell viability and phenotypic expression of the cell surface receptors, Kit (CD117) and high-affinity IgE receptor (FcεRI).

Abstract

Three-dimensional (3D) bioprinting utilizes hydrogel-based composites (or biomaterial inks) that are deposited in a pattern, forming a substrate onto which cells are deposited. Because many biomaterial inks can be potentially cytotoxic to primary cells, it is necessary to determine the biocompatibility of these hydrogel composites prior to their utilization in costly 3D tissue engineering processes. Some 3D culture methods, including bioprinting, require that cells be embedded into a 3D matrix, making it difficult to extract and analyze the cells for changes in viability and biomarker expression without eliciting mechanical damage. This protocol describes as proof of concept, a method to assess the biocompatibility of a crystalline nanocellulose (CNC) embedded agarose composite, fabricated into a 24-well culture system, with mouse bone marrow-derived mast cells (BMMCs) using flow cytometric assays for cell viability and biomarker expression.

After 18 h of exposure to the CNC/agarose/D-mannitol matrix, BMMC viability was unaltered as measured by propidium iodide (PI) permeability. However, BMMCs cultured on the CNC/agarose/D-mannitol substrate appeared to slightly increase their expression of the high-affinity IgE receptor (FcεRI) and the stem cell factor receptor (Kit; CD117), although this does not appear to be dependent on the amount of CNC in the bioink composite. The viability of BMMCs was also assessed following a time course exposure to hydrogel scaffolds that were fabricated from a commercial biomaterial ink composed of fibrillar nanocellulose (FNC) and sodium alginate using a 3D extrusion bioprinter. Over a period of 6-48 h, the FNC/alginate substrates did not adversely affect the viability of the BMMCs as determined by flow cytometry and microtiter assays (XTT and lactate dehydrogenase). This protocol describes an efficient method to rapidly screen the biochemical compatibility of candidate biomaterial inks for their utility as 3D scaffolds for post-print seeding with mast cells.

Introduction

The recent interest in 3D culture systems and 3D bioprinting has focused attention on hydrogels and hydrogel composites. These composites serve as viscous yet porous biomimetics and can be composed of up to 99% water content by weight, which is comparable to biological tissues1,2,3. These features of hydrogel composites thereby permit the growth of cells without affecting their viability and function. One such composite is crystalline nanocellulose (CNC), which has been used as a reinforcing material in hydrogel composites, cell scaffolds in the development of biomaterial imp....

Protocol

NOTE: This protocol is composed of five sections: (1) isolation of mouse bone marrow and differentiation of mouse bone marrow-derived mast cells (BMMCs), (2) fabrication of CNC/agarose/D-mannitol hydrogel substrates in a 24-well system and culture of BMMCs on the substrates, (3) removal of BMMCs from the CNC/agarose/D-mannitol hydrogel substrates and analysis of viability and biomarker expression using flow cytometry, (4) 3D bioprinting of hydrogel scaffolds from a commercially available fibrillar nanocellulose (FNC)/sod.......

Representative Results

One of the most crucial characteristics of a successful biomaterial ink or culture substrate is that of biocompatibility. Primarily, the substrate must not induce cellular death. There are several microtiter-based and flow cytometric methods of quantifying cell viability and necrosis; however, these methods are not amenable to analyzing cells embedded within a hydrogel matrix. In this protocol, the above mentioned limitation is circumvented by seeding the BMMCs onto the hydrogel substrate or bioprinted scaffold. After a .......

Discussion

The fabrication of 3D biomimetic tissues requires the successful amalgamation of the bioink, which mimics components of the extracellular matrix, with the cellular component(s) to create physiological analogs of in vivo tissues. This necessitates the use of primary cells, and not transformed cells, when fabricating physiological biomimetic tissues. Primary immunological cells, such as mast cells, however, are particularly susceptible to cytotoxic effects and phenotypic changes that may be elicited by the bioink .......

Disclosures

This work was supported by the National Research Council Canada and Alberta Innovates.

Acknowledgements

We thank Alberta Innovates for providing the CNC and Ken Harris and Jae-Young Cho for their technical advice when preparing the CNC/agarose/D-mannitol matrix. We also thank Ben Hoffman, Heather Winchell and Nicole Diamantides for their technical advice and support with the setup and calibration of the INKREDIBLE+ 3D bioprinter.

....

Materials

NameCompanyCatalog NumberComments
A
Acetic Acid (glacial)Sigma AldrichAX0074-6
Agarose (OmniPur)EMD Millipore Corporation2125-500GM
Armenian Hamster IgG Isotype Control, APC (Clone: eBio299Arm)Thermo Fisher Scientific17-4888-82
B
b-MercaptoethanolFisher ScientificO3446I-100
b-Nicotinamide adenine dinucleotide sodium salt (NAD)Sigma AldrichN0632-5G
BD 5 mL Syringe (Luer-Lok Tip)BD309646
BD PrecisionGlide Needle 26G x 1/2 inBD305111
BioLite 24 Well MultidishThermo Fisher Scientific930-186
BioLite 96 Well MultidishThermo Fisher Scientific130-188
BioLite 175 cm2 Flask VentedThermo Fisher Scientific130-191
Biosafety Cabinet Class IIMicrozone Corp., CanadaBK-2-6-B3
BSA, Fraction V (OmniPur)EMD Millipore Corporation2930-100GM
C
C57BL/6 miceThe Jackson Laboratory000664
CD117 (c-Kit) Monoclonal Antibody, PE (Clone: 2B8)Thermo Fisher Scientific12-1171-82
CELLINK BIOINK (3 x 3 mL Cartridge)CELLINK LLCIK1020000303
CELLINK CaCl2 Crosslinking Agent - Sterile Bottle 1 x 60 mLCELLINK LLCCL1010006001
CELLINK Empty Cartridges 3cc with End and Tip CapsCELLINK LLCCSC0103000102
CELLINK HeartWare for PCCELLINK LLCVersion 2.4.1
CELLINK INKREDIBLE+ 3D BIOPRINTERCELLINK LLCS-10003-001
CELLINK Sterile Standard Conical Bioprinting Nozzles 22GCELLINK LLCNZ4220005001
CELLINK Sterile Standard Conical Bioprinting Nozzles 25GCELLINK LLCNZ4250005001
CELLINK Sterile Standard Conical Bioprinting Nozzles 27GCELLINK LLCNZ4270005001
Cell Proliferation Kit II (XTT) (Roche)Sigma Aldrich11465015001
Centrifuge (Benchtop)Eppendorf5804R
Corning Costar 96 Well Clear Flat-Bottom Non-Treated PS MicroplateSigma AldrichCLS3370
CO2 IncubatorBinder GmbH, Germany9040-0113
CytoFLEX Flow CytometerBeckman CoulterA00-1-1102
D
D-mannitol (MilliporeSigma Calbiochem)Fisher Scientific44-390-7100GM
F
Falcon 15 mL Polystyrene Conical Tubes, SterileCorning352095
Falcon 50 mL Polystyrene Conical Tubes, SterileCorning352070
FceR1 alpha Monoclonal Antibody, APC (Clone: MAR-1)Thermo Fisher Scientific17-5898-82
Fetal Bovine Serum (FBS), qualified, heat inactivatedThermo Fisher Scientific12484028
FlowJo SoftwareBecton Dickinson & Co. USAVersion 10.6.2
G
GraphPad PrismGraphPad Software, LLCVersion 8.4.3
H
Hemacytometer (Improved Neubauer 0.1 mmm deep levy)VWR15170-208
HEPES Sodium SaltFisher ScientificBP410-500
I
Iodonitrotetrazolium chloride (INT)Sigma AldrichI10406-5G
L
L-Glutamine 200 mM (Gibco)Thermo Fisher Scientific25030-081
Lithium L-lactateSigma AldrichL2250-100G
M
MEM Non-Essential Amino Acids 100 mL 100x (Gibco)Thermo Fisher Scientific11140-050
1-Methoxy-5-methylphenazinium methyl sulfate (MPMS)Sigma AldrichM8640
Microtubes (1.7 mL clear)AxygenMCT-175-C
Microtubes (2.0 mL clear)AxygenMCT-200-C
MilliQ Academic (for producing MilliQ ultrapure water)MilliporeZMQS60001
N
Nalgene Rapid-Flow 90 mm Filter Unit (0.2 mm Pore size, 500 mL)Thermo Fisher Scientific566-0020
Nalgene Syringe filter (0.2 mm PES, 25 mm)Thermo Fisher Scientific725-2520
P
Penicillin Streptomycin 100 mL (Gibco)Thermo Fisher Scientific15140-122
PBS pH 7.4, No Calcium/Magnesium, 500 mL (Gibco) Thermo Fisher Scientific10010-023
Propidium iodide, 1.0 mg/mL (Invitrogen) Thermo Fisher ScientificP3566
R
Rat IgG2b kappa Isotype Control, PE (Clone: eB149/10H5)Thermo Fisher Scientific12-4031-82
Recombinant Murine IL-3PeproTech, Inc. 213-13
RPMI-1640 Medium 1X + 2.05 mM L-Glutamine (HyClone)GE HealthcareSH30027.01
S
Sarstedt 96 well round base PS transparent micro test plate (82.1582.001)Fisher ScientificNC9913213
Sodium Azide, 500 gFisher ScientificBP922I-500
Sodium Pyruvate (100 mM) 100X (Gibco)Thermo Fisher Scientific11360-070
T
Tris Base (2-amino-2(hydroxymethyl)-1,3-propanediol)Sigma Aldrich252859
Trypan Blue solution (0.4%, for microscopy)Sigma Aldrich93595
V
VARIOSKAN LUX Microplate Spectrophotometer (Type: 3020)Thermo Fisher ScientificVLBL00D0

References

  1. Tibbitt, M. W., Anseth, K. S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnology and Bioengineering. 103 (4), 655-663 (2009).
  2. Drury, J. L., Mooney, D. J. Hydrogels for tissue engineering: Sc....

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

NanocelluloseAgaroseBiomaterial InkBone Marrow derived Mast Cells3D BioprintingCytotoxicityTissue EngineeringBiocompatibleBioprinterBioprinting NozzlePrint Bed Calibration

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved