JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

Basophil Activation Test for Allergy Diagnosis

Published: May 31st, 2021

DOI:

10.3791/62600

1Allergy Unit, Hospital Regional Universitario de Málaga, 2Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 3Universidad de Málaga, Departamento de Biología celular, Genética y Fisiología, Universidad de Málaga, 4Departamento de Medicina, Universidad de Málaga, 5Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Andalusian Center for Nanomedicine and Biotechnology-BIONAND
* These authors contributed equally

The basophil activation test is a complementary in vitro diagnostic test for the evaluation of IgE-mediated allergic reactions based on the detection of basophil activation in the presence of a specific stimulus through the measure of activation markers by flow cytometry.

The basophil activation test (BAT) is a complementary in vitro diagnostic test that can be used in addition to clinical history, skin test (ST), and specific IgE (sIgE) determination in the evaluation of IgE-mediated allergic reactions to food, insect venom, drugs, as well as some forms of chronic urticaria. However, the role of this technique in the diagnostic algorithms is highly variable and not well determined.

BAT is based on the determination of basophil response to allergen/drug cross-linking IgE activation through the measurement of activation markers (such as CD63, CD203c) by flow cytometry. This test can be a useful and complementary tool to avoid controlled challenge tests to confirm allergy diagnosis, especially in subjects experiencing severe life-threatening reactions. In general, the performance of BAT should be considered if i) the allergen/drug produces false positive results in ST; ii) there is no allergen/drug source to use for ST or sIgE determination; iii) there is discordance between patient history and ST or sIgE determination; iv) symptoms suggest that ST may result in systemic response; v) before considering a CCT to confirm the culprit allergen/drug. The main limitations of the test are related to non-optimal sensitivity, especially in drug allergy, the need to perform the test no longer than 24 h after sample extraction, and the lack of standardization between laboratories in terms of procedures, concentrations, and cell markers.

IgE-mediated allergy diagnosis is based on clinical history, skin tests (STs), quantification of serum specific IgE (sIgE), and, if it is required and indicated, controlled challenge tests (CCTs)1,2,3,4,5,6. However, clinical history can be unreliable since there may be a lack of accurate information, and STs and CCTs are not risk-free procedures that can be contraindicated in subjects experiencing severe life-threatening reactions1,

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The protocol performance was conducted according to the Declaration of Helsinki principles and approved by the local Ethics Committee (Comité de Ética para la Investigación Provincial de Málaga, Spain). All subjects were informed orally about the research study and they signed the corresponding informed consent form.

NOTE: The present protocol details the BAT procedure that the authors use daily. However, this is not a standardized method and differences with proce.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

BAT performed with allergens or drugs allows investigation of IgE-dependent hypersensitivity reactions. Basophil reactivity should be measured in at least two optimal concentrations in order to obtain the best results34 and activation is visualized by the upregulation of CD63 on the cell surface. In the case of allergens, moreover, to confirm the basophil reactivity, the basophil sensitivity should be analyzed by measuring the reactivity at multiple decreasing allergen concentrations

Log in or to access full content. Learn more about your institution’s access to JoVE content here

BAT is a complementary in vitro diagnostic test for the evaluation of IgE-mediated allergic reactions that has shown to be useful in the diagnosis of reactions induced by different triggers such as drugs, food, or inhalants, as well as in some forms of chronic urticaria. In general, BAT performance should be considered if i) the allergen/drug produces false positive results in ST; ii) the allergen/drug is not available to be used for ST or sIgE quantification; iii) discordance between clinical history and ST or .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We thank Claudia Corazza for her invaluable English language support. This work was supported by Institute of Health ''Carlos III'' (ISCIII) of MINECO (grant cofunded by ERDF: "Una manera de hacer Europa"; Grants Nos. PI20/01715; PI18/00095; PI17/01410; PI17/01318; PI17/01237 and RETIC ARADYAL RD16/0006/0001; Andalusian Regional Ministry of Health (Grant Nos. PI-0127-2020, PIO-0176-2018; PE-0172-2018; PE-0039-2018; PC-0098-2017; PI-0075-2017; PI-0241-2016). ID is a Clinical Investigator (B-0001-2017) and AA holds a Senior Postdoctoral Contract (RH-0099-2020), both supported by Andalusian Regional Ministry of Health (cofunded by ESF: "Andalu....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
5 mL Round Bottom Polystyrene Test Tube, without Cap, Nonsterile Corning 352008
APC anti-human CD193 (CCR3) Antibody BioLegend 310708
BD FACSCalibur Flow Cytometer BD Biosciences
Calcium chloride Sigma-Aldrich C1016
FITC anti-human CD63 Antibody BioLegend 353006
HEPES (1 M) Thermo-Fisher 15630106
Lysing Solution 10x concentrated BD Biosciences 349202
Magnesium chloride Sigma-Aldrich M8266
N-Formyl-Met-Leu-Phe Sigma-Aldrich F3506
PE anti-human CD203c (E-NPP3) Antibody BioLegend 324606
Potassium chloride Sigma-Aldrich P9541
Purified Mouse Anti-Human IgE BD Biosciences 555857
Recombinant Human IL-3 R&D Systems 203-IL
Sheath Fluid BD Biosciences 342003
Sodium chloride Sigma-Aldrich S3014
TUBE 9 mL LH Lithium Heparin Greiner Bio-One 455084
Tween 20 Sigma-Aldrich P1379

  1. Mayorga, C., et al. In vitro tests for drug hypersensitivity reactions: an ENDA/EAACI Drug Allergy Interest Group position paper. Allergy. 71 (8), 1103-1134 (2016).
  2. Romano, A., et al. Towards a more precise diagnosis of hypersensitivity to beta-lactams - an EAACI position paper. Allergy. 75 (6), 1300-1315 (2020).
  3. Garvey, L. H., et al. An EAACI position paper on the investigation of perioperative immediate hypersensitivity reactions. Allergy. 74 (10), 1872-1884 (2019).
  4. Gomes, E. R., et al. Drug hypersensitivity in children: report from the pediatric task force of the EAACI Drug Allergy Interest Group. Allergy. 71 (2), 149-161 (2016).
  5. Ansotegui, I. J., et al. IgE allergy diagnostics and other relevant tests in allergy, a World Allergy Organization position paper. World Allergy Organization Journal. 13 (2), 100080 (2020).
  6. Jeebhay, M. F., et al. Food processing and occupational respiratory allergy- An EAACI position paper. Allergy. 74 (10), 1852-1871 (2019).
  7. Ebo, D. G., et al. Flow-assisted allergy diagnosis: current applications and future perspectives. Allergy. 61 (9), 1028-1039 (2006).
  8. Bochner, B. S. Systemic activation of basophils and eosinophils: markers and consequences. Journal of Allergy and Clinical Immunology. 106 (5), 292-302 (2000).
  9. Ghannadan, M., et al. Detection of novel CD antigens on the surface of human mast cells and basophils. International Archives of Allergy and Immunology. 127 (4), 299-307 (2002).
  10. Hoffmann, H. J., et al. The clinical utility of basophil activation testing in diagnosis and monitoring of allergic disease. Allergy. 70 (11), 1393-1405 (2015).
  11. Sainte-Laudy, J., Sabbah, A., Drouet, M., Lauret, M. G., Loiry, M. Diagnosis of venom allergy by flow cytometry. Correlation with clinical history, skin tests, specific IgE, histamine and leukotriene C4 release. Clinical & Experimental Allergy. 30 (8), 1166-1171 (2000).
  12. Sturm, G. J., et al. The CD63 basophil activation test in Hymenoptera venom allergy: a prospective study. Allergy. 59 (10), 1110-1117 (2004).
  13. Erdmann, S. M., et al. The basophil activation test in wasp venom allergy: sensitivity, specificity and monitoring specific immunotherapy. Allergy. 59 (10), 1102-1109 (2004).
  14. De Weck, A. L., et al. Diagnostic tests based on human basophils: more potentials and perspectives than pitfalls. International Archives of Allergy and Immunology. 146 (3), 177-189 (2008).
  15. Buhring, H. J., Streble, A., Valent, P. The basophil-specific ectoenzyme E-NPP3 (CD203c) as a marker for cell activation and allergy diagnosis. International Archives of Allergy and Immunology. 133 (4), 317-329 (2004).
  16. Knol, E. F., Mul, F. P., Jansen, H., Calafat, J., Roos, D. Monitoring human basophil activation via CD63 monoclonal antibody 435. Journal of Allergy and Clinical Immunology. 88 (3), 328-338 (1991).
  17. Fureder, W., Agis, H., Sperr, W. R., Lechner, K., Valent, P. The surface membrane antigen phenotype of human blood basophils. Allergy. 49 (10), 861-865 (1994).
  18. Sanz, M. L., et al. Allergen-induced basophil activation: CD63 cell expression detected by flow cytometry in patients allergic to Dermatophagoides pteronyssinus and Lolium perenne. Clinical & Experimental Allergy. 31 (7), 1007-1013 (2001).
  19. Monneret, G., et al. Monitoring of basophil activation using CD63 and CCR3 in allergy to muscle relaxant drugs. Clin Immunol. 102 (2), 192-199 (2002).
  20. Sanz, M. L., et al. Flow cytometric basophil activation test by detection of CD63 expression in patients with immediate-type reactions to betalactam antibiotics. Clinical & Experimental Allergy. 32 (2), 277-286 (2002).
  21. Ebo, D. G., et al. Flow cytometric analysis of in vitro activated basophils, specific IgE and skin tests in the diagnosis of pollen-associated food allergy. Cytometry Part B: Clinical Cytometry. 64 (1), 28-33 (2005).
  22. Sudheer, P. S., Hall, J. E., Read, G. F., Rowbottom, A. W., Williams, P. E. Flow cytometric investigation of peri-anaesthetic anaphylaxis using CD63 and CD203c. Anaesthesia. 60 (3), 251-256 (2005).
  23. Binder, M., Fierlbeck, G., King, T., Valent, P., Buhring, H. J. Individual hymenoptera venom compounds induce upregulation of the basophil activation marker ectonucleotide pyrophosphatase/phosphodiesterase 3 (CD203c) in sensitized patients. International Archives of Allergy and Immunology. 129 (2), 160-168 (2002).
  24. Hauswirth, A. W., et al. Recombinant allergens promote expression of CD203c on basophils in sensitized individuals. Journal of Allergy and Clinical Immunology. 110 (1), 102-109 (2002).
  25. Boumiza, R., et al. Marked improvement of the basophil activation test by detecting CD203c instead of CD63. Clinical & Experimental Allergy. 33 (2), 259-265 (2003).
  26. Macglashan, D. Expression of CD203c and CD63 in human basophils: relationship to differential regulation of piecemeal and anaphylactic degranulation processes. Clinical & Experimental Allergy. 40 (9), 1365-1377 (2010).
  27. Mayorga, C., Dona, I., Perez-Inestrosa, E., Fernandez, T. D., Torres, M. J. The Value of In Vitro Tests to DiminishDrug Challenges. International Journal of Molecular Sciences. 18 (6), (2017).
  28. Brockow, K., et al. General considerations for skin test procedures in the diagnosis of drug hypersensitivity. Allergy. 57 (1), 45-51 (2002).
  29. Brockow, K., et al. Skin test concentrations for systemically administered drugs -- an ENDA/EAACI Drug Allergy Interest Group position paper. Allergy. 68 (6), 702-712 (2013).
  30. Torres, M. J., et al. Approach to the diagnosis of drug hypersensitivity reactions: similarities and differences between Europe and North America. Clinical and Translational Allergy. 7, 7 (2017).
  31. Mayorga, C., et al. In vitro tests for drug hypersensitivity reactions: an ENDA/EAACI Drug Allergy Interest Group position paper. Allergy. 71 (8), 1103-1134 (2016).
  32. Mayorga, C., et al. Controversies in drug allergy: In vitro testing. Journal of Allergy and Clinical Immunology. 143 (1), 56-65 (2019).
  33. Aberer, W., et al. Drug provocation testing in the diagnosis of drug hypersensitivity reactions: general considerations. Allergy. 58 (9), 854-863 (2003).
  34. De Week, A. L., et al. Diagnosis of immediate-type beta-lactam allergy in vitro by flow-cytometric basophil activation test and sulfidoleukotriene production: a multicenter study. Journal of Investigational Allergology and Clinical Immunology. 19 (2), 91-109 (2009).
  35. Abuaf, N., et al. Comparison of two basophil activation markers CD63 and CD203c in the diagnosis of amoxicillin allergy. Clinical & Experimental Allergy. 38 (6), 921-928 (2008).
  36. Torres, M. J., et al. The diagnostic interpretation of basophil activation test in immediate allergic reactions to betalactams. Clinical & Experimental Allergy. 34 (11), 1768-1775 (2004).
  37. Torres, M. J., et al. Clavulanic acid can be the component in amoxicillin-clavulanic acid responsible for immediate hypersensitivity reactions. Journal of Allergy and Clinical Immunology. 125 (2), 502-505 (2010).
  38. Eberlein, B., et al. A new basophil activation test using CD63 and CCR3 in allergy to antibiotics. Clinical & Experimental Allergy. 40 (3), 411-418 (2010).
  39. Sanchez-Morillas, L., et al. Selective allergic reactions to clavulanic acid: a report of 9 cases. Journal of Allergy and Clinical Immunology. 126 (1), 177-179 (2010).
  40. Leysen, J., et al. Allergy to rocuronium: from clinical suspicion to correct diagnosis. Allergy. 66 (8), 1014-1019 (2011).
  41. Ebo, D. G., et al. Flow-assisted diagnostic management of anaphylaxis from rocuronium bromide. Allergy. 61 (8), 935-939 (2006).
  42. Kvedariene, V., et al. Diagnosis of neuromuscular blocking agent hypersensitivity reactions using cytofluorimetric analysis of basophils. Allergy. 61 (3), 311-315 (2006).
  43. Hagau, N., Gherman-Ionica, N., Sfichi, M., Petrisor, C. Threshold for basophil activation test positivity in neuromuscular blocking agents hypersensitivity reactions. Allergy Asthma Clin Immunol. 9 (1), 42 (2013).
  44. Uyttebroek, A. P., et al. Flowcytometric diagnosis of atracurium-induced anaphylaxis. Allergy. 69 (10), 1324-1332 (2014).
  45. Abuaf, N., et al. Validation of a flow cytometric assay detecting in vitro basophil activation for the diagnosis of muscle relaxant allergy. Journal of Allergy and Clinical Immunology. 104 (2), 411-418 (1999).
  46. Aranda, A., et al. In vitro evaluation of IgE-mediated hypersensitivity reactions to quinolones. Allergy. 66 (2), 247-254 (2011).
  47. Fernandez, T. D., et al. Hypersensitivity to fluoroquinolones: The expression of basophil activation markers depends on the clinical entity and the culprit fluoroquinolone. Medicine (Baltimore). 95 (23), 3679 (2016).
  48. Mayorga, C., et al. Fluoroquinolone photodegradation influences specific basophil activation. International Archives of Allergy and Immunology. 160 (4), 377-382 (2013).
  49. Rouzaire, P., et al. Negativity of the basophil activation test in quinolone hypersensitivity: a breakthrough for provocation test decision-making. International Archives of Allergy and Immunology. 157 (3), 299-302 (2012).
  50. Hagau, N., Longrois, D., Petrisor, C. Threshold for positivity and optimal dipyrone concentration in flow cytometry-assisted basophil activation test. Allergy, Asthma & Immunology Research. 5 (6), 383-388 (2013).
  51. Gamboa, P. M., et al. Use of CD63 expression as a marker of in vitro basophil activation and leukotriene determination in metamizol allergic patients. Allergy. 58 (4), 312-317 (2003).
  52. Gomez, E., et al. Immunoglobulin E-mediated immediate allergic reactions to dipyrone: value of basophil activation test in the identification of patients. Clinical & Experimental Allergy. 39 (8), 1217-1224 (2009).
  53. Pinnobphun, P., Buranapraditkun, S., Kampitak, T., Hirankarn, N., Klaewsongkram, J. The diagnostic value of basophil activation test in patients with an immediate hypersensitivity reaction to radiocontrast media. Annals of Allergy, Asthma & Immunology. 106 (5), 387-393 (2011).
  54. Salas, M., et al. Diagnosis of immediate hypersensitivity reactions to radiocontrast media. Allergy. 68 (9), 1203-1206 (2013).
  55. Chirumbolo, S. Basophil activation test (BAT) in the diagnosis of immediate hypersensitivity reactions to radiocontrast media. Allergy. 68 (12), 1627-1628 (2013).
  56. Dona, I., et al. Hypersensitivity Reactions to Multiple Iodinated Contrast Media. Frontiers in Pharmacology. 11, 575437 (2020).
  57. Giavina-Bianchi, P., Galvao, V. R., Picard, M., Caiado, J., Castells, M. C. Basophil Activation Test is a Relevant Biomarker of the Outcome of Rapid Desensitization in Platinum Compounds-Allergy. Journal of Allergy and Clinical Immunology Practice. 5 (3), 728-736 (2017).
  58. Iwamoto, T., et al. Evaluation of basophil CD203c as a predictor of carboplatin-related hypersensitivity reaction in patients with gynecologic cancer. Biological and Pharmaceutical Bulletin. 35 (9), 1487-1495 (2012).
  59. Iwamoto, T., et al. Carboplatin-induced severe hypersensitivity reaction: role of IgE-dependent basophil activation and FcepsilonRI. Cancer Science. 105 (11), 1472-1479 (2014).
  60. Muraro, A., et al. EAACI food allergy and anaphylaxis guidelines: diagnosis and management of food allergy. Allergy. 69 (8), 1008-1025 (2014).
  61. Sato, S., et al. Basophil activation marker CD203c is useful in the diagnosis of hen's egg and cow's milk allergies in children. International Archives of Allergy and Immunology. 152, 54-61 (2010).
  62. Ciepiela, O., et al. Basophil activation test based on the expression of CD203c in the diagnostics of cow milk allergy in children. European Journal of Medical Research. 15, 21-26 (2010).
  63. Ocmant, A., et al. Basophil activation tests for the diagnosis of food allergy in children. Clinical & Experimental Allergy. 39 (8), 1234-1245 (2009).
  64. Carroccio, A., et al. A comparison between two different in vitro basophil activation tests for gluten- and cow's milk protein sensitivity in irritable bowel syndrome (IBS)-like patients. Clinical Chemistry and Laboratory Medicine. 51 (6), 1257-1263 (2013).
  65. Tokuda, R., et al. Antigen-induced expression of CD203c on basophils predicts IgE-mediated wheat allergy. Allergology International. 58 (2), 193-199 (2009).
  66. Chinuki, Y., et al. CD203c expression-based basophil activation test for diagnosis of wheat-dependent exercise-induced anaphylaxis. Journal of Allergy and Clinical Immunology. 129 (5), 1404-1406 (2012).
  67. Carroccio, A., et al. Non-celiac wheat sensitivity diagnosed by double-blind placebo-controlled challenge: exploring a new clinical entity. Am J Gastroenterol. 107 (12), 1898-1906 (2012).
  68. Carroccio, A., et al. A cytologic assay for diagnosis of food hypersensitivity in patients with irritable bowel syndrome. Clin Gastroenterol Hepatol. 8 (3), 254-260 (2010).
  69. Santos, A. F., et al. Basophil activation test discriminates between allergy and tolerance in peanut-sensitized children. Journal of Allergy and Clinical Immunology. 134 (3), 645-652 (2014).
  70. Glaumann, S., et al. Basophil allergen threshold sensitivity, CD-sens, IgE-sensitization and DBPCFC in peanut-sensitized children. Allergy. 67 (2), 242-247 (2012).
  71. Javaloyes, G., et al. Performance of different in vitro techniques in the molecular diagnosis of peanut allergy. Journal of Investigational Allergology and Clinical Immunology. 22 (7), 508-513 (2012).
  72. Glaumann, S., Nopp, A., Johansson, S. G., Borres, M. P., Nilsson, C. Oral peanut challenge identifies an allergy but the peanut allergen threshold sensitivity is not reproducible. PLoS One. 8 (1), 53465 (2013).
  73. Elizur, A., et al. NUT Co Reactivity - ACquiring Knowledge for Elimination Recommendations (NUT CRACKER) study. Allergy. 73 (3), 593-601 (2018).
  74. Cucu, T., De Meulenaer, B., Bridts, C., Devreese, B., Ebo, D. Impact of thermal processing and the Maillard reaction on the basophil activation of hazelnut allergic patients. Food Chem Toxicol. 50 (5), 1722-1728 (2012).
  75. Worm, M., et al. Impact of native, heat-processed and encapsulated hazelnuts on the allergic response in hazelnut-allergic patients. Clinical & Experimental Allergy. 39 (1), 159-166 (2009).
  76. Brandstrom, J., et al. Basophil allergen threshold sensitivity and component-resolved diagnostics improve hazelnut allergy diagnosis. Clinical & Experimental Allergy. 45 (9), 1412-1418 (2015).
  77. Lotzsch, B., Dolle, S., Vieths, S., Worm, M. Exploratory analysis of CD63 and CD203c expression in basophils from hazelnut sensitized and allergic individuals. Clinical and Translational Allergy. 6, 45 (2016).
  78. Ebo, D. G., Bridts, C. H., Hagendorens, M. M., De Clerck, L. S., Stevens, W. J. Scampi allergy: from fancy name-giving to correct diagnosis. Journal of Investigational Allergology and Clinical Immunology. 18 (3), 228-230 (2008).
  79. Gamboa, P. M., et al. Component-resolved in vitro diagnosis in peach-allergic patients. Journal of Investigational Allergology and Clinical Immunology. 19 (1), 13-20 (2009).
  80. Gamboa, P. M., et al. Two different profiles of peach allergy in the north of Spain. Allergy. 62 (4), 408-414 (2007).
  81. Diaz-Perales, A., et al. Recombinant Pru p 3 and natural Pru p 3, a major peach allergen, show equivalent immunologic reactivity: a new tool for the diagnosis of fruit allergy. Journal of Allergy and Clinical Immunology. 111 (3), 628-633 (2003).
  82. Erdmann, S. M., Heussen, N., Moll-Slodowy, S., Merk, H. F., Sachs, B. CD63 expression on basophils as a tool for the diagnosis of pollen-associated food allergy: sensitivity and specificity. Clinical & Experimental Allergy. 33 (5), 607-614 (2003).
  83. Erdmann, S. M., et al. In vitro analysis of birch-pollen-associated food allergy by use of recombinant allergens in the basophil activation test. International Archives of Allergy and Immunology. 136 (3), 230-238 (2005).
  84. Rubio, A., et al. Benefit of the basophil activation test in deciding when to reintroduce cow's milk in allergic children. Allergy. 66 (1), 92-100 (2011).
  85. Decuyper, I. i., et al. Performance of basophil activation test and specific IgG4 as diagnostic tools in nonspecific lipid transfer protein allergy: Antwerp-Barcelona comparison. Allergy. 75 (3), 616-624 (2020).
  86. Mayorga, C., et al. Basophil response to peanut allergens in Mediterranean peanut-allergic patients. Allergy. 69 (7), 964-968 (2014).
  87. Glaumann, S., et al. Evaluation of basophil allergen threshold sensitivity (CD-sens) to peanut and Ara h 8 in children IgE-sensitized to Ara h 8. Clinical and Molecular Allergy. 13 (1), 5 (2015).
  88. Wolbing, F., et al. The clinical relevance of birch pollen profilin cross-reactivity in sensitized patients. Allergy. 72 (4), 562-569 (2017).
  89. Commins, S. P., et al. Delayed clinical and ex vivo response to mammalian meat in patients with IgE to galactose-alpha-1,3-galactose. Journal of Allergy and Clinical Immunology. 134 (1), 108-115 (2014).
  90. Santos, A. F., et al. Distinct parameters of the basophil activation test reflect the severity and threshold of allergic reactions to peanut. Journal of Allergy and Clinical Immunology. 135 (1), 179-186 (2015).
  91. Song, Y., et al. Correlations between basophil activation, allergen-specific IgE with outcome and severity of oral food challenges. Annals of Allergy, Asthma & Immunology. 114 (4), 319-326 (2015).
  92. Chinthrajah, R. S., et al. Development of a tool predicting severity of allergic reaction during peanut challenge. Annals of Allergy, Asthma & Immunology. 121 (1), 69-76 (2018).
  93. Santos, A. F., Shreffler, W. G. Road map for the clinical application of the basophil activation test in food allergy. Clinical & Experimental Allergy. 47 (9), 1115-1124 (2017).
  94. Santos, A. F., et al. Biomarkers of severity and threshold of allergic reactions during oral peanut challenges. Journal of Allergy and Clinical Immunology. 146 (2), 344-355 (2020).
  95. Reier-Nilsen, T., et al. Predicting reactivity threshold in children with anaphylaxis to peanut. Clinical & Experimental Allergy. 48 (4), 415-423 (2018).
  96. Chapuis, A., et al. h 2 basophil activation test does not predict clinical reactivity to peanut. Journal of Allergy and Clinical Immunology Practice. 6 (5), 1772-1774 (2018).
  97. Patil, S. U., et al. Early decrease in basophil sensitivity to Ara h 2 precedes sustained unresponsiveness after peanut oral immunotherapy. Journal of Allergy and Clinical Immunology. 144 (5), 1310-1319 (2019).
  98. Chinthrajah, R. S., et al. Sustained outcomes in oral immunotherapy for peanut allergy (POISED study): a large, randomised, double-blind, placebo-controlled, phase 2 study. Lancet. 394 (10207), 1437-1449 (2019).
  99. Kim, E. H., et al. Long-term sublingual immunotherapy for peanut allergy in children: Clinical and immunologic evidence of desensitization. Journal of Allergy and Clinical Immunology. 144 (5), 1320-1326 (2019).
  100. Tsai, M., Mukai, K., Chinthrajah, R. S., Nadeau, K. C., Galli, S. J. Sustained successful peanut oral immunotherapy associated with low basophil activation and peanut-specific IgE. Journal of Allergy and Clinical Immunology. 145 (3), 885-896 (2020).
  101. Nachshon, L., et al. Efficacy and Safety of Sesame Oral Immunotherapy-A Real-World, Single-Center Study. Journal of Allergy and Clinical Immunology Practice. 7 (8), 2775-2781 (2019).
  102. Goldberg, M. R., et al. Efficacy of baked milk oral immunotherapy in baked milk-reactive allergic patients. Journal of Allergy and Clinical Immunology. 136 (6), 1601-1606 (2015).
  103. Keet, C. A., et al. The safety and efficacy of sublingual and oral immunotherapy for milk allergy. Journal of Allergy and Clinical Immunology. 129 (2), 448-455 (2012).
  104. Matsui, T., et al. Changes in passively-sensitized basophil activation to alphaS1-casein after oral immunotherapy. Immunity, Inflammation and Disease. 8 (2), 188-197 (2020).
  105. Giavi, S., et al. Oral immunotherapy with low allergenic hydrolysed egg in egg allergic children. Allergy. 71 (11), 1575-1584 (2016).
  106. Jones, S. M., et al. Clinical efficacy and immune regulation with peanut oral immunotherapy. Journal of Allergy and Clinical Immunology. 124 (2), 292-300 (2009).
  107. Burks, A. W., et al. Oral immunotherapy for treatment of egg allergy in children. New England Journal of Medicine. 367 (3), 233-243 (2012).
  108. Elizur, A., et al. Clinical and laboratory 2-year outcome of oral immunotherapy in patients with cow's milk allergy. Allergy. 71 (2), 275-278 (2016).
  109. Gernez, Y., et al. Basophil CD203c levels are increased at baseline and can be used to monitor omalizumab treatment in subjects with nut allergy. International Archives of Allergy and Immunology. 154 (4), 318-327 (2011).
  110. Gomez, E., et al. Role of the basophil activation test in the diagnosis of local allergic rhinitis. Journal of Allergy and Clinical Immunology. 132 (4), 975-976 (2013).
  111. Nopp, A., et al. Basophil allergen threshold sensitivity: a useful approach to anti-IgE treatment efficacy evaluation. Allergy. 61 (3), 298-302 (2006).
  112. Dahlen, B., et al. Basophil allergen threshold sensitivity, CD-sens, is a measure of allergen sensitivity in asthma. Clinical & Experimental Allergy. 41 (8), 1091-1097 (2011).
  113. Lalek, N., Kosnik, M., Silar, M., Korosec, P. Immunoglobulin G-dependent changes in basophil allergen threshold sensitivity during birch pollen immunotherapy. Clinical & Experimental Allergy. 40 (8), 1186-1193 (2010).
  114. Schmid, J. M., Wurtzen, P. A., Dahl, R., Hoffmann, H. J. Early improvement in basophil sensitivity predicts symptom relief with grass pollen immunotherapy. Journal of Allergy and Clinical Immunology. 134 (3), 741-744 (2014).
  115. Sharif, H., et al. Immunologic mechanisms of a short-course of Lolium perenne peptide immunotherapy: A randomized, double-blind, placebo-controlled trial. Journal of Allergy and Clinical Immunology. 144 (3), 738-749 (2019).
  116. Kim, S. H., et al. Changes in basophil activation during immunotherapy with house dust mite and mugwort in patients with allergic rhinitis. Asia Pacific Allergy. 8 (1), 6 (2018).
  117. Feng, M., et al. Allergen Immunotherapy-Induced Immunoglobulin G4 Reduces Basophil Activation in House Dust Mite-Allergic Asthma Patients. Frontiers in Cell and Developmental Biology. 8, 30 (2020).
  118. Korosec, P., et al. Clinical routine utility of basophil activation testing for diagnosis of hymenoptera-allergic patients with emphasis on individuals with negative venom-specific IgE antibodies. International Archives of Allergy and Immunology. 161 (4), 363-368 (2013).
  119. Ebo, D. G., Hagendorens, M. M., Bridts, C. H., De Clerck, L. S., Stevens, W. J. Hymenoptera venom allergy: taking the sting out of difficult cases. Journal of Investigational Allergology and Clinical Immunology. 17 (6), 357-360 (2007).
  120. Ebo, D. G., et al. Flow-assisted quantification of in vitro activated basophils in the diagnosis of wasp venom allergy and follow-up of wasp venom immunotherapy. Cytometry Part B: Clinical Cytometry. 72 (3), 196-203 (2007).
  121. Ott, H., Tenbrock, K., Baron, J., Merk, H., Lehmann, S. Basophil activation test for the diagnosis of hymenoptera venom allergy in childhood: a pilot study. Klin Padiatr. 223 (1), 27-32 (2011).
  122. Eberlein-Konig, B., Rakoski, J., Behrendt, H., Ring, J. Use of CD63 expression as marker of in vitro basophil activation in identifying the culprit in insect venom allergy. Journal of Investigational Allergology and Clinical Immunology. 14 (1), 10-16 (2004).
  123. Eberlein, B., Krischan, L., Darsow, U., Ollert, M., Ring, J. Double positivity to bee and wasp venom: improved diagnostic procedure by recombinant allergen-based IgE testing and basophil activation test including data about cross-reactive carbohydrate determinants. Journal of Allergy and Clinical Immunology. 130 (1), 155-161 (2012).
  124. Sturm, G. J., et al. Inconsistent results of diagnostic tools hamper the differentiation between bee and vespid venom allergy. PLoS One. 6 (6), 20842 (2011).
  125. Zitnik, S. E., et al. Monitoring honeybee venom immunotherapy in children with the basophil activation test. Pediatric Allergy and Immunology. 23 (2), 166-172 (2012).
  126. Kosnik, M., Silar, M., Bajrovic, N., Music, E., Korosec, P. High sensitivity of basophils predicts side-effects in venom immunotherapy. Allergy. 60 (11), 1401-1406 (2005).
  127. Celesnik, N., et al. Short-term venom immunotherapy induces desensitization of FcepsilonRI-mediated basophil response. Allergy. 67 (12), 1594-1600 (2012).
  128. Nullens, S., et al. Basophilic histamine content and release during venom immunotherapy: insights by flow cytometry. Cytometry Part B: Clinical Cytometry. 84 (3), 173-178 (2013).
  129. Bidad, K., Nawijn, M. C., Van Oosterhout, A. J., Van Der Heide, S., Elberink, J. N. Basophil activation test in the diagnosis and monitoring of mastocytosis patients with wasp venom allergy on immunotherapy. Cytometry Part B: Clinical Cytometry. 86 (3), 183-190 (2014).
  130. Eberlein-Konig, B., Schmidt-Leidescher, C., Behrendt, H., Ring, J. Predicting side-effects in venom immunotherapy by basophil activation. Allergy. 61 (7), 897 (2006).
  131. Kikuchi, Y., Kaplan, A. P. Mechanisms of autoimmune activation of basophils in chronic urticaria. Journal of Allergy and Clinical Immunology. 107 (6), 1056-1062 (2001).
  132. Huston, D. P., Sabato, V. Decoding the Enigma of Urticaria and Angioedema. Journal of Allergy and Clinical Immunology Practice. 6 (4), 1171-1175 (2018).
  133. Netchiporouk, E., et al. Positive CD63 Basophil Activation Tests Are Common in Children with Chronic Spontaneous Urticaria and Linked to High Disease Activity. International Archives of Allergy and Immunology. 171 (2), 81-88 (2016).
  134. Irinyi, B., et al. Extended diagnostic value of autologous serum skin test and basophil CD63 expression assay in chronic urticaria. British Journal of Dermatology. 168 (3), 656-658 (2013).
  135. Chen, Q., et al. Basophil CD63 expression in chronic spontaneous urticaria: correlation with allergic sensitization, serum autoreactivity and basophil reactivity. Journal of the European Academy of Dermatology and Venereology. 31 (3), 463-468 (2017).
  136. Wedi, B., Novacovic, V., Koerner, M., Kapp, A. Chronic urticaria serum induces histamine release, leukotriene production, and basophil CD63 surface expression--inhibitory effects ofanti-inflammatory drugs. Journal of Allergy and Clinical Immunology. 105 (3), 552-560 (2000).
  137. Yasnowsky, K. M., et al. Chronic urticaria sera increase basophil CD203c expression. Journal of Allergy and Clinical Immunology. 117 (6), 1430-1434 (2006).
  138. Curto-Barredo, L., et al. Basophil Activation Test identifies the patients with Chronic Spontaneous Urticaria suffering the most active disease. Immunity, Inflammation and Disease. 4 (4), 441-445 (2016).
  139. Santos, A. F., Alpan, O., Hoffmann, H. J. Basophil activation test: Mechanisms and considerations for use in clinical trials and clinical practice. Allergy. , (2021).
  140. Boumiza, R., Debard, A. L., Monneret, G. The basophil activation test by flow cytometry: recent developments in clinical studies, standardization and emerging perspectives. Clinical and Molecular Allergy. 3, 9 (2005).
  141. Aljadi, Z., et al. Activation of basophils is a new and sensitive marker of biocompatibility in hemodialysis. Artif Organs. 38 (11), 945-953 (2014).
  142. Rasmussen, P., Spillner, E., Hoffmann, H. J. Inhibiting phosphatase SHIP-1 enhances suboptimal IgE-mediated activation of human blood basophils but inhibits IgE-mediated activation of cultured human mast cells. Immunology Letters. 210, 40-46 (2019).
  143. Mueller-Wirth, N., et al. IgE-mediated chlorhexidine allergy-Cross-reactivity with other biguanide disinfectants. Allergy. 75 (12), 3237-3247 (2020).
  144. Johansson, S. G., et al. Passive IgE-sensitization by blood transfusion. Allergy. 60 (9), 1192-1199 (2005).
  145. Ariza, A., et al. Basophil activation after nonsteroidal anti-inflammatory drugs stimulation in patients with immediate hypersensitivity reactions to these drugs. Cytometry A. 85 (5), 400-407 (2014).
  146. Sturm, G. J., et al. The basophil activation test in the diagnosis of allergy: technical issues and critical factors. Allergy. 64 (9), 1319-1326 (2009).
  147. Iqbal, K., Bhargava, K., Skov, P. S., Falkencrone, S., Grattan, C. E. A positive serum basophil histamine release assay is a marker for ciclosporin-responsiveness in patients with chronic spontaneous urticaria. Clinical and Translational Allergy. 2 (1), 19 (2012).
  148. Korosec, P., et al. high-affinity IgE receptors, and CCL2 in human anaphylaxis. Journal of Allergy and Clinical Immunology. 140 (3), 750-758 (2017).
  149. Fernandez, T. D., et al. Negativization rates of IgE radioimmunoassay and basophil activation test in immediate reactions to penicillins. Allergy. 64 (2), 242-248 (2009).
  150. Kwok, M., Lack, G., Santos, A. F. Improved standardisation of the whole blood basophil activation test to peanut. Clinical and Translational Allergy. 8 (26), 15-16 (2017).
  151. Mukai, K., et al. Assessing basophil activation by using flow cytometry and mass cytometry in blood stored 24 hours before analysis. Journal of Allergy and Clinical Immunology. 139 (3), 889-899 (2017).
  152. Sousa, N., Martinez-Aranguren, R., Fernandez-Benitez, M., Ribeiro, F., Sanz, M. L. Comparison of basophil activation test results in blood preserved in acid citrate dextrose and EDTA. Journal of Investigational Allergology and Clinical Immunology. 20 (6), 535-536 (2010).
  153. Knol, E. F., Koenderman, L., Mul, F. P., Verhoeven, A. J., Roos, D. Differential activation of human basophils by anti-IgE and formyl-methionyl-leucyl-phenylalanine. Indications for protein kinase C-dependent and -independent activation pathways. European Journal of Immunology. 21 (4), 881-885 (1991).
  154. Macglashan, D. W. Basophil activation testing. Journal of Allergy and Clinical Immunology. 132 (4), 777-787 (2013).
  155. Macglashan, D., Moore, G., Muchhal, U. Regulation of IgE-mediated signalling in human basophils by CD32b and its role in Syk down-regulation: basic mechanisms in allergic disease. Clinical & Experimental Allergy. 44 (5), 713-723 (2014).
  156. Macglashan, D. Subthreshold desensitization of human basophils re-capitulates the loss of Syk and FcepsilonRI expression characterized by other methods of desensitization. Clinical & Experimental Allergy. 42 (7), 1060-1070 (2012).
  157. Grochowy, G., Hermiston, M. L., Kuhny, M., Weiss, A., Huber, M. Requirement for CD45 in fine-tuning mast cell responses mediated by different ligand-receptor systems. Cell Signaling. 21 (8), 1277-1286 (2009).
  158. Schroeder, J. T., Chichester, K. L., Bieneman, A. P. Human basophils secrete IL-3: evidence of autocrine priming for phenotypic and functional responses in allergic disease. Journal of Immunology. 182 (4), 2432-2438 (2009).
  159. Ocmant, A., et al. Flow cytometry for basophil activation markers: the measurement of CD203c up-regulation is as reliable as CD63 expression in the diagnosis of cat allergy. Journal of Immunology Methods. 320 (1-2), 40-48 (2007).
  160. Gentinetta, T., et al. Individual IL-3 priming is crucial for consistent in vitro activation of donor basophils in patients with chronic urticaria. Journal of Allergy and Clinical Immunology. 128 (6), 1227-1234 (2011).
  161. Sturm, E. M., et al. CD203c-based basophil activation test in allergy diagnosis: characteristics and differences to CD63 upregulation. Cytometry Part B: Clinical Cytometry. 78 (5), 308-318 (2010).
  162. Hausmann, O. V., et al. Robust expression of CCR3 as a single basophil selection marker in flow cytometry. Allergy. 66 (1), 85-91 (2011).
  163. Nucera, E., et al. Utility of Basophil Activation Test for monitoring the acquisition of clinical tolerance after oral desensitization to cow's milk: Pilot study. United European Gastroenterol Journal. 3 (3), 272-276 (2015).
  164. Imoto, Y., et al. Peripheral basophil reactivity, CD203c expression by Cryj1 stimulation, is useful for diagnosing seasonal allergic rhinitis by Japanese cedar pollen. Immunity, Inflammation and Disease. 3 (3), 300-308 (2015).
  165. Konstantinou, G. N., et al. EAACI taskforce position paper: evidence for autoimmune urticaria and proposal for defining diagnostic criteria. Allergy. 68 (1), 27-36 (2013).
  166. Santos, A. F., Becares, N., Stephens, A., Turcanu, V., Lack, G. The expression of CD123 can decrease with basophil activation: implications for the gating strategy of the basophil activation test. Clinical and Translational Allergy. 6, 11 (2016).
  167. Dijkstra, D., et al. Identification and quantification of basophils in the airways of asthmatics following segmental allergen challenge. Cytometry A. 85 (7), 580-587 (2014).
  168. Dijkstra, D., Meyer-Bahlburg, A. Human Basophils Modulate Plasma Cell Differentiation and Maturation. Journal of Immunology. 198 (1), 229-238 (2017).
  169. Sihra, B. S., Kon, O. M., Grant, J. A., Kay, A. B. Expression of high-affinity IgE receptors (Fc epsilon RI) on peripheral blood basophils, monocytes, and eosinophils in atopic and nonatopic subjects: relationship to total serum IgE concentrations. Journal of Allergy and Clinical Immunology. 99 (5), 699-706 (1997).
  170. Dehlink, E., Baker, A. H., Yen, E., Nurko, S., Fiebiger, E. Relationships between levels of serum IgE, cell-bound IgE, and IgE-receptors on peripheral blood cells in a pediatric population. PLoS One. 5 (8), 12204 (2010).
  171. Hoffmann, H. J., Frandsen, P. M., Christensen, L. H., Schiotz, P. O., Dahl, R. Cultured human mast cells are heterogeneous for expression of the high-affinity IgE receptor FcepsilonRI. International Archives of Allergy and Immunology. 157 (3), 246-250 (2012).
  172. Ebo, D. G., et al. Analyzing histamine release by flow cytometry (HistaFlow): a novel instrument to study the degranulation patterns of basophils. Journal of Immunology Methods. 375 (1-2), 30-38 (2012).
  173. Macglashan, D. Marked differences in the signaling requirements for expression of CD203c and CD11b versus CD63 expression and histamine release in human basophils. International Archives of Allergy and Immunology. 159 (3), 243-252 (2012).
  174. Torres, M. J., et al. Clavulanic acid can be the component in amoxicillin-clavulanic acid responsible for immediate hypersensitivity reactions. Journal of Allergy and Clinical Immunology. 125 (2), 502-505 (2010).
  175. Ariza, A., et al. Pyrazolones metabolites are relevant for identifying selective anaphylaxis to metamizole. Scientific Reports. 6, 23845 (2016).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved