Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We developed a reproducible method to visualize the internalization of nonhydrolyzable fluorescent adenosine triphosphate (ATP), an ATP surrogate, with high cellular resolution. We validated our method using independent in vitro and in vivo assays-human tumor cell lines and immunodeficient mice xenografted with human tumor tissue.

Abstract

Adenosine triphosphate (ATP), including extracellular ATP (eATP), has been shown to play significant roles in various aspects of tumorigenesis, such as drug resistance, epithelial-mesenchymal transition (EMT), and metastasis. Intratumoral eATP is 103 to 104 times higher in concentration than in normal tissues. While eATP functions as a messenger to activate purinergic signaling for EMT induction, it is also internalized by cancer cells through upregulated macropinocytosis, a specific type of endocytosis, to perform a wide variety of biological functions. These functions include providing energy to ATP-requiring biochemical reactions, donating phosphate groups during signal transduction, and facilitating or accelerating gene expression as a transcriptional cofactor. ATP is readily available, and its study in cancer and other fields will undoubtedly increase. However, eATP study remains at an early stage, and unresolved questions remain unanswered before the important and versatile activities played by eATP and internalized intracellular ATP can be fully unraveled.

These authors' laboratories' contributions to these early eATP studies include microscopic imaging of non-hydrolysable fluorescent ATP, coupled with high- and low-molecular weight fluorescent dextrans, which serve as macropinocytosis and endocytosis tracers, as well as various endocytosis inhibitors, to monitor and characterize the eATP internalization process. This imaging modality was applied to tumor cell lines and to immunodeficient mice, xenografted with human cancer tumors, to study eATP internalization in vitro and in vivo. This paper describes these in vitro and in vivo protocols, with an emphasis on modifying and finetuning assay conditions so that the macropinocytosis-/endocytosis-mediated eATP internalization assays can be successfully performed in different systems.

Introduction

The opportunistic uptake of intratumoral extracellular (ie) nutrients has recently been named a key hallmark for cancer metabolism1. One of these important nutrients is ATP, as the concentration of ieATP is 103 and 104 times higher than that found in normal tissues, in the range of several hundred µM to low mM2,3,4,5. As a key energy and signaling molecule, ATP plays a central role in cellular metabolism in cancerous and healthy cells6,7

Protocol

All procedures reported herein were performed in accordance with Ohio University's IACUC and with the NIH.

1. Selection of nonhydrolyzable fluorescent ATP (NHF-ATP) and dextrans

  1. Select a fluorophore-conjugated NHF-ATP (Figure 1A) and endocytosis tracers, high and low molecular weight fluorescent dextrans (TMR-HMWFD and TMR-LMWFD) (Figure 1B), based on the preferred emission wavelengths (e.g., imaging system equipped wi.......

Representative Results

In vitro study
Intracellular internalization of NHF-ATP was demonstrated by co-localization of NHF-ATP with HMWFD or LMWFD (Figure 4). The success of this procedure primarily relies on the use of appropriate concentrations of NHF-ATP and dextrans and on determining the appropriate type(s) of dextrans (poly-lysine vs. neutral). For example, to investigate macropinocytosis, HMWFD was chosen as it is internalized only by macropinosomes

Discussion

A method was developed for spatial, temporal, and quantitative analysis of the cellular internalization of nonhydrolyzable ATP. This method is broadly applicable for use in diverse biological systems, including various tumorigenic models, for which we provide technical instruction and representative data. To acquire interpretable data during in vivo ATP internalization studies (section 4 of the protocol), it is critical to limit the experimental time elapsed from intratumoral dextran injection to cryo-embedding........

Acknowledgements

Cryosectioning was performed on-site at the Ohio University Histopathology Core. This work was supported partly by start-up funds (Ohio University College of Arts & Sciences) to C Nielsen; NIH grant R15 CA242177-01 and RSAC award to X Chen.

....

Materials

NameCompanyCatalog NumberComments
A549 cells, human lung epithelial, carcinomaNational Cancer Instituten/aLess expensive source
AcetoneFisher ScientificS25904
Aluminum foil, ReynoldsGrainger6CHG6
Aqueous Mounting Medium, ProLong Gold Anti-fade ReagentThermoFisherP36930
ATP analogJena BiosciencesNK-101
Autoclave, sterilizerGrainger33ZZ40
Blades, cryostat, high profileC. L. Sturkey, Inc.DT554550
Calipers, vernierGrainger4KU77
Cell medium, Ham's Nutrient Mixture F12, serum-freeMillipore Sigma51651C-1000ML
Centrifuge, refrigerated with swinging bucket rotorEppendorf5810R
ChloroformAcros Organics423555000
Conical tube, 15 mLVWR21008-216
Conical tube, 50 mLVWR21008-242
Coverslips, glass, 12 mmCorning2975-245
Cryostat, Leica CM1950Leica BiosystemsCM1950
Delicate task wipe, Kim WipesKimberly-Clark34155
Dextran, Lysine fixable, High Molecular Weight (HMW)InvitrogenD1818MW = 70,000, Tetramethylrhodamine
Dextran, Neutral, High Molecular Weight (HMW)InvitrogenD1819
Dulbecco's Modified Eagle Medium (DMEM), serum-freeFisher Scientific11885076
Dry iceLocal deliveryCustom order
Epifluorescent imaging system, Nikon NiU and Nikon NIS Elements acquisition softwareNikonCustom order
EthanolFisher ScientificBP2818-4
Fetal bovine serum (FBS)ThermoFisher16000044
Forceps, Dumont #7, curvedFine Science Tools11274-20
Forceps, Dumont #5, straightFine Science Tools11254-20
Gloves (small, medium, large)MicroflexN191, N192, N193
Gloves, MAPA Temp-Ice 700 Thermal (for handling dry ice)Fisher Scientific19-046-563
HemocytometerDaiggerEF16034F EA
Incubator, cell cultureEppendorfGalaxy 170 S
Labelling tapeFisher Scientific159015R
Marking pen, Sharpie (ultra-fine)Staples642736
Mice, immunodeficient (Nu/J)Jackson Laboratory2019
Microcentrifuge, accuSpin Micro17Fisher Scientific13-100-675
Microcentrifgue tubes, Eppendorf tubes (1.5 mL)AxygenMCT-150-C
Microscope slide boxFisher Scientific50-751-4983
Needle, 27 gaugeBecton-Dickinson752 0071
PaintbrushGrainger39AL12
Paper towelsStaples33550
ParaformaldehydeAcros Organics416785000
Penicillin/StreptomycinGibco15140122
Perforated spoon, 15 mm diameter, 135 mm lengthRoboz Surgical Instrument Co.RS-6162
Phosphate buffered saline (PBS)Fisher ScientificBP3991
Pipet tips (10 μL)Fisher Scientific02-707-438
Pipet tips (200 μL)Fisher Scientific02-707-411
Pipet tips (1000 μL)Fisher Scientific02-707-403
Pipets, serological (10 mL)VWR89130-910
Pippetor, Gilson P2DaiggerEF9930A
Pipettor Starter Kit, Gilson (2-10 μL, 20-200 μL, 200-1000 μL)DaiggerEF9931A
Platform shaker - orbital, benchtopCole-ParmerEW-51710-23
Positively-charged microscope slides, SuperfrostFisher Scientific12-550-15
Scalpel, size 10, Surgical Design, Inc.Fisher Scientific22-079-707
Scissors, surgical - sharp, curvedFine Science Tools14005-12
Software for image analysis, Nikon ElementsNikonCustom order
Software for image analysis, ImageJ (FIJI)National Institutes of Healthn/aDownload online (free)
Specimen disc 30 mm (chuck holder), cryostat accessoryLeica Biosystems14047740044
Staining tray, 245 mm BioAssay DishCorning431111
Syringe, 1 ccBecton-Dickinson309623
Tape, laboratory, 19 mm widthFisher Scientific15-901-5R
TimerFisher Scientific14-649-17
Tissue culture dish, 100 x 15 mm diameterFisher Scientific08-757-100D
Tissue culture flask, 225 cm2ThermoFisher159933
Tissue culture plate, 24-wellBecton-Dickinson353226
Tissue embedding mold, stainless steelTissue Tek4161
Tissue Freezing Medium, Optimal Cutting Temperature (OCT)Fisher Scientific4585
Trypsin-EDTA (ethylenediaminetetraacetic acid), 0.25%Gibco25200072
Water bath, Precision GP 2SThermoFisherTSGP2S

References

  1. Pavlova, N. N., Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metabolism. 23 (1), 27-47 (2016).
  2. Pellegatti, P., et al. Increased level of extracellular ATP at tumor sites: in vivo imaging ....

Explore More Articles

Fluorescence MicroscopyATP InternalizationMacropinocytosisHuman Tumor CellsTumor xenografted MiceCancer CellsNutrient InternalizationHigh Resolution ImagingMetabolic DiseasesCell CultureSubcutaneous InjectionTumor GrowthFluorescent Dextran

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved