A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
This protocol describes how to use the Microbial Microdroplet Culture system (MMC) to conduct automated microbial cultivation and adaptive evolution. MMC can cultivate and sub-cultivate microorganisms automatically and continuously and monitor online their growth with relatively high throughput and good parallelization, reducing labor and reagent consumption.
Conventional microbial cultivation methods usually have cumbersome operations, low throughput, low efficiency, and large consumption of labor and reagents. Moreover, microplate-based high-throughput cultivation methods developed in recent years have poor microbial growth status and experiment parallelization because of their low dissolved oxygen, poor mixture, and severe evaporation and thermal effect. Due to many advantages of micro-droplets, such as small volume, high throughput, and strong controllability, the droplet-based microfluidic technology can overcome these problems, which has been used in many kinds of research of high-throughput microbial cultivation, screening, and evolution. However, most prior studies remain at the stage of laboratory construction and application. Some key issues, such as high operational requirements, high construction difficulty, and lack of automated integration technology, restrict the wide application of droplet microfluidic technology in microbial research. Here, an automated Microbial Microdroplet Culture system (MMC) was successfully developed based on droplet microfluidic technology, achieving the integration of functions such as inoculation, cultivation, online monitoring, sub-cultivation, sorting, and sampling required by the process of microbial droplet cultivation. In this protocol, wild-type Escherichia coli (E. coli) MG1655 and a methanol-essential E. coli strain (MeSV2.2) were taken as examples to introduce how to use the MMC to conduct automated and relatively high-throughput microbial cultivation and adaptive evolution in detail. This method is easy to operate, consumes less labor and reagents, and has high experimental throughput and good data parallelity, which has great advantages compared with conventional cultivation methods. It provides a low-cost, operation-friendly, and result-reliable experimental platform for scientific researchers to conduct related microbial research.
Microbial cultivation is an important foundation for microbiological scientific research and industrial applications, which is widely used in the isolation, identification, reconstruction, screening, and evolution of microorganisms1,2,3. Conventional microbial cultivation methods mainly use test tubes, shake flasks, and solid plates as cultivation containers, combined with shaking incubators, spectrophotometers, microplate readers, and other equipment for microbial cultivation, detection, and screening. However, these methods have many problems, such as cumbersome operations, low throughput, low efficiency, and large consumption of labor and reagents. The high-throughput cultivation methods developed in recent years are mainly based on the microplate. But the microplate has a low level of dissolved oxygen, poor mixing property, and severe evaporation and thermal effect, which often lead to poor growth status and experiment parallelization of microorganisms4,5,6,7; on the other hand, it needs to be equipped with expensive equipment, such as liquid-handling workstations and microplate readers, to achieve automated cultivation and process detection8,9.
As an important branch of microfluidic technology, droplet microfluidics has been developed in recent years based on traditional continuous-flow microfluidic systems. It is a discrete flow microfluidic technology that uses two immiscible liquid phases (usually oil-water) to generate dispersed micro-droplets and operate on them10. Because micro-droplets have the characteristics of small volume, large specific surface area, high internal mass transfer rate, and no cross-contamination caused by compartmentalization, and the advantages of strong controllability and high throughput of droplets, there have been many kinds of research applying droplet microfluidic technology in high-throughput cultivation, screening, and evolution of microorganisms11. However, there are still a series of key issues to make droplet microfluidic technology popularized and widely applied. Firstly, the operation of droplet microfluidics is cumbersome and intricate, resulting in high technical requirements for operators. Secondly, droplet microfluidic technology combines optical, mechanical, and electrical components and needs to be associated with biotechnology application scenarios. It is difficult for a single laboratory or team to build efficient droplet microfluidic control systems if there is no multi-disciplinary collaboration. Thirdly, on account of the small volume of micro-droplet (from picoliter (pL) to microliter (μL)), it takes much difficulty to realize the precise automated control and real-time online detection of droplets for some basic microbial operations such as sub-cultivation, sorting, and sampling, and it is also difficult to construct an integrated equipment system12.
In order to address the above problems, an automatic Microbial Microdroplet Culture system (MMC) was successfully developed based on droplet microfluidic technology13. The MMC consists of four functional modules: a droplet recognition module, a droplet spectrum detection module, a microfluidic chip module, and a sampling module. Through the system integration and control of all the modules, automated operation system including the generation, cultivation, measurement (optical density (OD) and fluorescence), splitting, fusion, sorting of droplets is accurately established, achieving the integration of functions such as inoculation, cultivation, monitoring, sub-cultivation, sorting and sampling required by the process of microbial droplet cultivation. MMC can hold up to 200 replicate droplet cultivation units of 2-3 µL volume, which is equivalent to 200 shake flask cultivation units. The micro-droplet cultivation system can satisfy the requirements of non-contamination, dissolved oxygen, mixing, and mass-energy exchange during the growth of microorganisms, and meet the various needs of microbial research through multiple integrated functions, for instance, growth curve measurement, adaptive evolution, single factor multi-level analysis, and metabolite research and analysis (based on fluorescence detection)13,14.
Here, the protocol introduces how to use the MMC to conduct automated and microbial cultivation and adaptive evolution in detail (Figure 1). We took wild-type Escherichia coli (E. coli) MG1655 as an example to demonstrate the growth curve measurement and a methanol-essential E. coli strain MeSV2.215 to demonstrate the adaptive evolution in MMC. An operation software for MMC was developed, which makes the operation very simple and clear. In the whole process, the user needs to prepare the initial bacteria solution, set the conditions of the MMC, and then inject the bacteria solution and related reagents into the MMC. Subsequently, the MMC will automatically perform operations such as droplet generation, recognition and numbering, cultivation, and adaptive evolution. It also will perform online detection (OD and fluorescence) of the droplets with high time resolution and display the related data (which can be exported) in the software. The operator can stop the cultivation process at any time according to the results and extract the target droplets for subsequent experiments. The MMC is easy to operate, consumes less labor and reagents, and has relatively high experimental throughput and good data parallelity, which has significant advantages compared with conventional cultivation methods. It provides a low-cost, operation-friendly, and robust experimental platform for researchers to conduct related microbial research.
1. Instrument and software installation
2. Preparations
3. Growth curve measurement in MMC
4. Adaptive evolution in MMC
5. Clean of the MMC
This protocol uses E. coli MG1655 and a MeSV2.2 strain as examples to demonstrate the microbial cultivation and methanol-essential adaptive evolution with an automated and relatively high-throughputstrategy in MMC. The growth curve measurement was mainly used to characterize microbial cultivation. The adaptive evolution was conducted by automated continuous sub-cultivation and adding a high concentration of methanol as the selective pressure during each sub-cultivation. Whether adaptive evolution had been realiz...
This protocol presents how to use the Microbial Microdroplet Culture system (MMC) to perform automated microbial cultivation and long-term adaptive evolution. MMC is a miniaturized, automated, and high-throughput microbial cultivation system. Compared with conventional microbial high-throughput cultivation methods and instruments, MMC has many advantages such as low labor and reagent consumption, simple operation, online detection (OD and fluorescence), high-time-resolution data collection, and superior parallelization. ...
The authors have nothing to disclose.
This study was supported by the National Key Research and Development Program of China (2018YFA0901500), the National Key Scientific Instrument and Equipment Project of the National Natural Science Foundation of China (21627812), and the Tsinghua University Initiative Scientific Research Program (20161080108). We also thank Prof. Julia A. Vorholt (Institute of Microbiology, Department of Biology, ETH Zurich, Zurich 8093, Switzerland) for the provision of the methanol-essential E. coli strain version 2.2 (MeSV2.2).
Name | Company | Catalog Number | Comments |
0.22 μm PVDF filter membrane | Merck Millipore Ltd. | SLGPR33RB | Sterilize the MMC oil |
4 °C refrigerator | Haier | BCD-289BSW | For reagent storage |
Agar | Becton, Dickinson and Company | 214010 | For solid plate preparation |
CaCl2·2H2O | Sinopharm Chemical Reagent Beijing Co., Ltd. | 20011160 | Component of the special medium for MeSV2.2. |
Clean bench | Beijing Donglian Har Instrument Manufacture Co., Ltd. | DL-CJ-INDII | For aseptic operation and UV sterilization |
CoCl2·6H2O | Sinopharm Chemical Reagent Beijing Co., Ltd. | 10007216 | Component of the special medium for MeSV2.2. |
Computer | Lenovo | E450 | Software installation and MMC control |
Constant temperature incubator | Shanghai qixin scientific instrument co., LTD | LRH 250 | For the microbial cultivation using solid medium |
CuSO4·5H2O | Sinopharm Chemical Reagent Beijing Co., Ltd. | 10008218 | Component of the special medium for MeSV2.2. |
Electronic balance | OHAUS | AR 3130 | For reagent weighing |
EP tube | Thermo Fisher | 1.5 mL | For droplet collection |
FeCl3·6H2O | Sinopharm Chemical Reagent Beijing Co., Ltd. | 10011928 | Component of the special medium for MeSV2.2. |
Freezing Tube | Thermo Fisher | 2.0 mL | For strain preservation |
Gluconate | Sigma-Aldrich | S2054 | Component of the special medium for MeSV2.2. |
Glycerol | GENERAL-REAGENT | G66258A | For strain preservation |
High-Pressure Steam Sterilization Pot | SANYO Electric | MLS3020 | For autoclaved sterilization |
isopropyl-β-d-thiogalactopyranoside (IPTG) | Biotopped | 420322 | Component of the special medium for MeSV2.2. |
Kanamycin sulfate | Solarbio | K8020 | Component of the special medium for MeSV2.2. |
KH2PO4 | MACKLIN | P815661 | Component of the special medium for MeSV2.2. |
Methanol | MACKLIN | M813895 | Component of the special medium for MeSV2.2. |
MgSO4·7H2O | BIOBYING | 1305715 | Component of the special medium for MeSV2.2. |
Microbial Microdroplet Culture System (MMC) | Luoyang TMAXTREE Biotechnology Co., Ltd. | MMC-I | Performing growth curve determination and adaptive evolution. Please refer to http://www.tmaxtree.com/en/index.php?v=news&id=110 |
Microfluidic chip | Luoyang TMAXTREE Biotechnology Co., Ltd. | MMC-ALE-OD | For various droplet operations. Please refer to http://www.tmaxtree.com/en/ |
MMC oil | Luoyang TMAXTREE Biotechnology Co., Ltd. | MMC-M/S-OD | The oil phase for droplet microfluidics. Please refer to http://www.tmaxtree.com/en/ |
MnCl2 | Sinopharm Chemical Reagent Beijing Co., Ltd. | 20026118 | Component of the special medium for MeSV2.2. |
NaCl | GENERAL-REAGENT | G81793J | Component of the LB medium |
Na2HPO4·12H2O | GENERAL-REAGENT | G10267B | Component of the special medium for MeSV2.2. |
NH4Cl | Sinopharm Chemical Reagent Beijing Co., Ltd. | 10001518 | Component of the special medium for MeSV2.2. |
Petri dish | Corning Incorporated | 90 mm | For the preparation of solid medium |
Pipette | eppendorf | 2.5 μL, 10 μL, 100μL, 1000μL | For liquid handling |
Quick connector A | Luoyang TMAXTREE Biotechnology Co., Ltd. | — | For the connection of each joint. Please refer to http://www.tmaxtree.com/en/ |
Reagent bottle | Luoyang TMAXTREE Biotechnology Co., Ltd. | MMC-PCB | Sampling and storage of bacteria solution and reagents. Please refer to http://www.tmaxtree.com/en/ |
Shake flask | Union-Biotech | 50 mL | For microbial cultivation |
Shaking incubator | Shanghai Sukun Industrial Co., Ltd. | SKY-210 2B | For the microbial cultivation in shake flask |
Streptomycin sulfate | Solarbio | S8290 | Component of the special medium for MeSV2.2. |
Syringe | JIANGSU ZHIYU MEDICAL INSTRUCTMENT CO., LTD | 10 mL | Draw liquid and inject it into the reagent bottle |
Syringe needle | OUBEL Hardware Store | 22G | Inner diameter is 0.41 mm and outer diameter is 0.71 mm. |
Tryptone | Oxoid Ltd. | LP0042 | Component of the LB medium |
Ultra low temperature refrigerator | SANYO Ultra-low | MDF-U4086S | For strain preservation (-80 °C) |
UV–Vis spectrophotometer | General Electric Company | Ultrospec 3100 pro | For the measurement of OD values |
Vitamin B1 | Solarbio | SV8080 | Component of the special medium for MeSV2.2. |
Yeast extract | Oxoid Ltd. | LP0021 | Component of the LB medium |
ZnSO4·7H2O | Sinopharm Chemical Reagent Beijing Co., Ltd. | 10024018 | Component of the special medium for MeSV2.2. |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved