A subscription to JoVE is required to view this content. Sign in or start your free trial.
In this study, we present an effective and reproducible protocol to isolate the immune populations of the murine respiratory system. We also provide a method for the identification of all innate and adaptive immune cells that reside in the lungs of healthy mice, using a 9-color-based flow cytometry panel.
The respiratory tract is in direct contact with the outside environment and requires a precisely regulated immune system to provide protection while suppressing unwanted reactions to environmental antigens. Lungs host several populations of innate and adaptive immune cells that provide immune surveillance but also mediate protective immune responses. These cells, which keep the healthy pulmonary immune system in balance, also participate in several pathological conditions such as asthma, infections, autoimmune diseases, and cancer. Selective expression of surface and intracellular proteins provides unique immunophenotypic properties to the immune cells of the lung. Consequently, flow cytometry has an instrumental role in the identification of such cell populations during steady-state and pathological conditions. This paper presents a protocol that describes a consistent and reproducible method to identify the immune cells that reside in the lungs of healthy mice under steady-state conditions. However, this protocol can also be used to identify changes in these cell populations in various disease models to help identify disease-specific changes in the lung immune landscape.
The murine respiratory tract contains a unique immune system responsible for fighting pathogens and maintaining immune homeostasis. The pulmonary immune system consists of cellular populations with significant heterogeneity in their phenotype, function, origin, and location. Resident alveolar macrophages (AMs), originated mainly from fetal monocytes, reside in the alveolar lumen1, while bone marrow-derived interstitial macrophages (IMs) reside in the lung parenchyma2. IMs can be further subclassified by the expression of CD206. CD206+ IMs populate the peribronchial and perivascular area, while CD206- IMs are located at the alveolar interstitium3. A few subclassifications of IMs have been proposed recently3,4,5,6. Although IMs are less studied than AMs, recent evidence supports their crucial role in the regulation of the immune system of the lung7. In addition, CD206 is also expressed in alternatively activated AMs8.
Pulmonary dendritic cells (DCs) are another heterogeneous group of lung immune cells with respect to their functional properties, location, and origin. Four subcategories of DCs have been described in the lung: conventional CD103+ DCs (also known as cDC1), conventional CD11b+ DCs (also known as cDC2), monocyte-derived DCs (MoDCs), and plasmacytoid DCs9,10,11,12,13. The first three subclasses can be defined as major histocompatibility complex (MHC) II+CD11c+9,10,14,15. Plasmacytoid DCs express MHC II and are intermediately positive for CD11c but express high levels of B220 and PDCA-19,13,16. In naïve murine lungs, CD103 DCs and CD11b DCs are located in the airway interstitium, whereas plasmacytoid DCs are located in the alveolar interstitium17.
Two major populations of monocytes reside in the lung during steady state: classical monocytes and non-classical monocytes. Classical monocytes are Ly6C+ and are critical for the initial inflammatory response. In contrast, non-classical monocytes are Ly6C- and have been widely viewed as anti-inflammatory cells3,16,18. Recently, an additional population of CD64+CD16.2+ monocytes was described, which originate from Ly6C- monocytes and give rise to CD206+ IMs3.
Eosinophils mainly appear in the lungs during helminth infection or allergic conditions. However, there is a small number of eosinophils in the pulmonary parenchyma during steady state, known as resident eosinophils. In contrast to the resident eosinophils, inflammatory eosinophils are found in the lung interstitium and bronchoalveolar lavage (BAL). In mouse models of house dust mite (HDM), inflammatory eosinophils are recruited into the lung after antigen-mediated stimulation. It has been proposed that resident eosinophils might have a regulatory role in allergy by inhibiting T helper 2 (Th2) sensitization to HDM19.
In contrast to the rest of pulmonary myeloid cells, neutrophils express Ly6G but not CD68 and are characterized by a signature of the CD68-Ly6G+ immunophenotype16,20,21. Visualization studies have shown that during steady state, the lung reserves a pool of neutrophils in the intravascular compartment and hosts a considerable number of extravascular neutrophils22. Similar to eosinophils, neutrophils are not found in BAL at steady state; however, several forms of immune stimulation, such as LPS challenge, asthma, or pneumonia, drive neutrophils into the alveolar lumen, resulting in their presence in BAL21,22,23.
A substantial number of CD45+ cells of the lung represent natural killer (NK), T cells, and B cells and are negative for most myeloid markers24. In the lungs of naïve mice, these three cell types can be identified based on the expression of CD11b and MHC II18. Around 25% of pulmonary CD45+ cells are B cells, whereas the percentage of NK cells is higher in the lung than other lymphoid and non-lymphoid tissues24,25,26. Among pulmonary T cells, a considerable fraction is CD4-CD8- and plays an important role in respiratory infections26.
Because the lung hosts a very complex and unique immune system, several gating strategies for the identification of lung immune cells have been developed and reported16,18,20,27. The gating strategy described herein provides a comprehensive and reproducible way to identify up to 12 different pulmonary myeloid and non-myeloid immune populations using 9 markers. Additional markers have been used to validate the results. Furthermore, a detailed method is provided for the preparation of a single-cell suspension that minimizes cell death and allows the identification of the most complete profile of the immune cell compartment of the lung. It should be noted that the identification of non-immune cells of the lung, such as epithelial cells (CD45-CD326+CD31-), endothelial cells (CD45-CD326-CD31+), and fibroblasts requires a different approach28,29. Identification of such populations is not included in the protocol and method described here.
All studies and experiments described in this protocol were conducted under guidelines according to the Institutional Animal Care and Use Committee (IACUC) of Beth Israel Deaconess Medical Center. Six to ten weeks old C57BL/6 mice of either sex were used to develop this protocol.
1. Surgical excision and tissue preparation
2. Preparation of single-cell suspension
3. Surface antibody staining
4. Cell fixation and intracellular staining
Gating strategy
The first step of our gating strategy is the exclusion of the debris and doublets (Figure 1A). Careful exclusion of doublets is critical to avoid false-positive populations (Supplemental Figure S2). Then, immune cells are identified using CD45+, a marker for hematopoietic cells (Figure 1B). The live-dead stain can be added to exclude dead cells. However, this protocol results in the death of...
Identification of pulmonary immune cells can be challenging because of the multiple immune cell types residing in the lung and their unique immunophenotypic characteristics compared to their counterparts residing in other tissues. In several pathologic conditions, cells with distinct phenotypic features appear in the lungs. For example, bleomycin-induced lung injury results in the recruitment of circulating monocyte-derived macrophages in the alveolar space, where they can remain for as long as one year and even persist ...
V.A.B. has patents on the PD-1 pathway licensed by Bristol-Myers Squibb, Roche, Merck, EMD-Serono, Boehringer Ingelheim, AstraZeneca, Novartis, and Dako. The authors declare no other competing financial interests.
This work was supported by NIH grants R01CA238263 and R01CA229784 (VAB).
Name | Company | Catalog Number | Comments |
10 mL syringe plunger | EXELINT | 26265 | |
18 G needles | BD Precision Glide Needle | 305165 | |
21 G needles | BD Precision Glide Needle | 305195 | |
50 mL conical tubes | Falcon | 3520 | |
70 μm cell strainer | ThermoFisher | 22363548 | |
96-well plates | Falcon/corning | 3799 | |
ACK Lysing Buffer | ThermoFisher | A10492-01 | |
anti-mouse CD11b | Biolegend | 101215 | For details see Table 2 |
anti-mouse CD11c | Biolegend | 117339 / 117337 | For details see Table 2 |
anti-mouse CD45 | Biolegend | 103115 | For details see Table 2 |
anti-mouse CD64 | Biolegend | 139319 | For details see Table 2 |
anti-mouse CD68 | Biolegend | 137009 | For details see Table 2 |
anti-mouse GR-1 | Biolegend | 108433 | For details see Table 2 |
anti-mouse Siglec F | Biolegend | 155503 | For details see Table 2 |
AVERTIN | Sigma-Aldrich | 240486 | |
B220 | Biolegend | 103228 | For details see Table 2 |
Bovine Serum Albumin (BSA) | Sigma-Aldrich | 9048-46-8 | |
CD103 | Biolegend | 121405 / 121419 | For details see Table 2 |
CD24 | Biolegend | 138503 | For details see Table 2 |
CD3 | Biolegend | 100205 | For details see Table 2 |
Centrifuge | |||
Collagenase Type 1 | Worthington Biochemical Corp | LS004196 | |
CX3CR1 | Biolegend | 149005 | For details see Table 2 |
DNase I | Millipore Sigma | 10104159001 | |
Ethanol | |||
F4/80 | Biolegend | 123133 | For details see Table 2 |
FcBlock (CD16/32) | Biolegend | 101301 | For details see Table 2 |
Fetal Bovine Serum | R&D Systems | ||
Fine Serrated Forceps | Roboz Surgical Instrument Co | ||
Foxp3 / Transcription Factor Staining Buffer Set | ThermoFisher | 00-5523-00 | |
Futura Safety Scalpel | Merit Medical Systems | SMS210 | |
Live/Dead Fixable Far Read Dead Cell Stain Kit | ThermoFisher | L34973 | For details see Table 2 |
MERTK | Biolegend | 151505 | For details see Table 2 |
MHC-II | Biolegend | 107621 | For details see Table 2 |
NK1.1 | Biolegend | 108705 | For details see Table 2 |
Orbital Shaker | VWR | Model 200 | |
Petri dish | Falcon | 351029 | |
Refrigerated benchtop centrifuge | SORVAL ST 16R | ||
Small curved scissor | Roboz Surgical Instrument Co |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved