Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Techniques to measure the activity of key enzymes of glycogen metabolism are presented, using a simple spectrophotometer operating in the visible range.

Abstract

Glycogen is synthesized as a storage form of glucose by a wide array of organisms, ranging from bacteria to animals. The molecule comprises linear chains of α1,4-linked glucose residues with branches introduced through the addition of α1,6-linkages. Understanding how the synthesis and degradation of glycogen are regulated and how glycogen attains its characteristic branched structure requires the study of the enzymes of glycogen storage. However, the methods most commonly used to study these enzyme activities typically employ reagents or techniques that are not available to all investigators. Here, we discuss a battery of procedures that are technically simple, cost-effective, and yet still capable of providing valuable insight into the control of glycogen storage. The techniques require access to a spectrophotometer, operating in the range of 330 to 800 nm, and are described assuming that the users will employ disposable, plastic cuvettes. However, the procedures are readily scalable and can be modified for use in a microplate reader, allowing highly parallel analysis.

Introduction

Glycogen is widely distributed in nature, with the compound being found in bacteria, many protists, fungi, and animals. In microorganisms, glycogen is important for cell survival when nutrients are limiting and, in higher organisms such as mammals, synthesis and degradation of glycogen serve to buffer blood glucose levels1,2,3. The study of glycogen metabolism is, therefore, of importance to such diverse fields as microbiology and mammalian physiology. Understanding glycogen metabolism requires studying the key enzymes of glycogen synthesis (glycogen synthase and the branchin....

Protocol

1. Determination of glycogen synthase activity

  1. Prepare stock solutions of required reagents as indicated in Table 1 (prior to the experimental day).
ComponentDirections
50 mM Tris pH 8.0Dissolve 0.61 g of Tris base in ~ 80 mL of water.  Chill to 4 °C........

Representative Results

Determination of glycogen synthase activity
Figure 1 shows representative results from glycogen synthase assays using purified enzymes. In panel A, following a slight lag, there was a linear decrease in the absorption at 340 nm over time for a period of around 12 min. The rate of change in absorption in Figure 1A was ~0.12 absorbance units/min. A rate of change in absorbance between ~0.010 and ~0.20 absorbance units/min is optimal and the .......

Discussion

In general, the key advantages of all of the methods presented are their low cost, ease, speed, and lack of reliance upon specialized equipment. The major disadvantage that they all share is sensitivity compared to other available methods. The sensitivity of the procedures that involve production or consumption of NADH/NADPH are easy to estimate. Given that the extinction coefficient of NADH/NADPH is 6.22 M-1 cm-1, simple arithmetic indicates that ~10-20 µM changes in concentration can be readi.......

Acknowledgements

The author would like to thank Karoline Dittmer and Andrew Brittingham for their insights and many helpful discussions. This work was supported in part by grants from the Iowa Osteopathic Education and Research Fund (IOER 03-17-05 and 03-20-04).

....

Materials

NameCompanyCatalog NumberComments
Amylopectin (amylose free) from waxy cornFisher ScientificA0456
AmyloseBiosynth CarbosynthYA10257
ATP, disodium saltMilliporeSigmaA3377
D-Glucose-1,6-bisphosphate, potassium saltMilliporeSigmaG6893
D-glucose-6-phosphate, sodium saltMilliporeSigmaG7879
Glucose-6-phosphate dehydrogenase, Grade I, from yeastMilliporeSigma10127655001
Glycogen, Type II from oysterMilliporeSigmaG8751
HexokinaseMilliporeSigma11426362001
Methacrylate cuvettes, 1.5 mLFisher Scientific14-955-128Methacrylate is required since some procedures are conducted at 340 nm or below
β-Nicotinamide adenine dinucleotide phosphate sodium saltMilliporeSigmaN0505
β-Nicotinamide adenine dinucleotide, reduced disodium saltMilliporeSigma43420
Nucleoside 5'-diphosphate kinaseMilliporeSigmaN0379
Phosphoenolpyruvate, monopotassium saltMilliporeSigmaP7127
Phosphoglucomutase from rabbit muscleMilliporeSigmaP3397
Phosphorylase A from rabbit muscleMilliporeSigmaP1261
Pyruvate Kinase/Lactic Dehydrogenase enzymes from rabbit muscleMilliporeSigmaP0294
UDP-glucose, disodium saltMilliporeSigmaU4625

References

  1. Wilson, W. A., et al. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiology Reviews. 34 (6), 952-985 (2010).
  2. Ralton, J. E., Sernee, M. F., McConville, M. J. Evolution and function of carbohydrat....

Explore More Articles

Keywords Glycogen MetabolismSpectrophotometric MethodsGlycogen Synthase ActivityUDP GlucoseNADHGlycogenGlucose 6 phosphate DehydrogenaseHexokinaseEukaryotic Metabolism

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved