Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Transmitochondrial cybrids are hybrid cells obtained by fusing mitochondrial DNA (mtDNA)-depleted cells (rho0 cells) with cytoplasts (enucleated cells) derived from patients affected by mitochondrial disorders. They allow the determination of the nuclear or mitochondrial origin of the disease, evaluation of biochemical activity, and confirmation of the pathogenetic role of mtDNA-related variants.

Abstract

Deficiency of the mitochondrial respiratory chain complexes that carry out oxidative phosphorylation (OXPHOS) is the biochemical marker of human mitochondrial disorders. From a genetic point of view, the OXPHOS represents a unique example because it results from the complementation of two distinct genetic systems: nuclear DNA (nDNA) and mitochondrial DNA (mtDNA). Therefore, OXPHOS defects can be due to mutations affecting nuclear and mitochondrial encoded genes.

The groundbreaking work by King and Attardi, published in 1989, showed that human cell lines depleted of mtDNA (named rho0) could be repopulated by exogenous mitochondria to obtain the so-called "transmitochondrial cybrids." Thanks to these cybrids containing mitochondria derived from patients with mitochondrial disorders (MDs) and nuclei from rho0 cells, it is possible to verify whether a defect is mtDNA- or nDNA-related. These cybrids are also a powerful tool to validate the pathogenicity of a mutation and study its impact at a biochemical level. This paper presents a detailed protocol describing cybrid generation, selection, and characterization.

Introduction

Mitochondrial disorders (MDs) are a group of multisystem syndromes caused by an impairment in mitochondrial functions due to mutations in either nuclear (nDNA) or mitochondrial (mtDNA) DNA1. They are among the most common inherited metabolic diseases, with a prevalence of 1:5,000. mtDNA-associated diseases follow the rules of mitochondrial genetics: maternal inheritance, heteroplasmy and threshold effect, and mitotic segregation2. Human mtDNA is a double-stranded DNA circle of 16.6 kb, which contains a short control region with sequences needed for replication and transcription, 13 protein-coding genes (all subunits of t....

Protocol

NOTE: The use of human fibroblasts may require ethical approval. Fibroblasts used in this study were derived from MD patients and stored in the Institutional biobank in compliance with ethical requirements. Informed consent was provided for the use of the cells. Perform all cell culture procedures under a sterile laminar flow cabinet at room temperature (RT, 22-25 °C). Use sterile-filtered solutions suitable for cell culture and sterile equipment. Grow all cell lines in a humidified incubator at 37 °C with 5% C.......

Representative Results

Generating cybrids requires 3 days of laboratory work plus a selection period (~2 weeks) and additional 1-2 weeks for the growth of clones. The critical steps are the quality of cytoplasts and the selection period. The morphology of cybrids resembles that of the rho0 donor cells. Assignment of the correct mtDNA and nDNA in the cybrids is mandatory to confirm the identity of the cells. An example is given in Figure 2. In this case, we generated cybrids starting from fibroblasts der.......

Discussion

The mtDNA has a very high mutation rate compared to nDNA because of the lack of protective histones and its location close to the respiratory chain, which exposes the molecule to damaging oxidative effects not efficiently counteracted by the repair systems16. The first pathogenic mtDNA mutations were identified in 198817,18, and since then, a large number of mutations have been described. NGS technology is a relevant approach to screen the.......

Acknowledgements

This study was carried out in the Center for the Study of Mitochondrial Pediatric Diseases (http://www.mitopedia.org), funded by the Mariani Foundation. VT is a member of the European Reference Network for Rare Neuromuscular Diseases (ERN EURO-NMD).

....

Materials

NameCompanyCatalog NumberComments
5-Bromo-2'-DeoxyuridineSigma-Aldrich (Merck)B5002-500MG
6 well PlatesCorning3516
96 well PlatesCorning3596
Blood and Cell Culture DNA extraction kitQIAGEN13323
CentrifugeBeckman CoulterAvanti J-257,200 rcf, 37 °C
Centrifuge bottles, 250 mLBeckman Coulter356011
Cytochalasin B from Drechslera dematioideaSigma-Aldrich (Merck)C2743-200UL
Dialyzed FBSGibco26400-036 100mL
DMEM High Glucose (w/o L-Glutamine W/Sodium Pyruvate)EuroCloneECB7501L
Dulbecco's Phosphate Buffered Saline - PBS (w/o Calcium w/o Magnesium)EuroCloneECB4004L
Ethanol Absolute AnhydrousCarlo Erba414601
FetalClone III (Bovine Serum Product)Cytiva - HyClone LaboratoriesSH30109.03
Glass pasteur pipettesVWRM4150NO250SP4
Inverted Research Microscope For Live Cell MicroscopyNikonECLIPSE TE200
JA-14 Fixed-Angle Aluminum RotorBeckman Coulter339247
Laboratory autoclave Vapormatic 770Labotech29960014
L-Glutamine 200 mM (100x)EuroCloneECB 3000D
Minimum Essential Medium MEMEurocloneECB2071L
MycoAlert Mycoplasma Detection KitLonzaLT07-318
PEG (Polyethylene glicol solution)Sigma-Aldrich (Merck)P7181-5X5ML
Penicillin-Streptomycin (solution 100x)EuroCloneECB3001D
Primo TC Dishes 100 mmEuroCloneET2100
Primo TC Dishes 35 mmEuroCloneET2035
Sodium Pyruvate 100 mMEuroCloneECM0542D
StereomicroscopeNikonSMZ1000
Trypsin 2.5% in HBSSEuroCloneECB3051D
UridineSigma-Aldrich (Merck)U3003-5G

References

  1. Gorman, G. S., et al. Mitochondrial diseases. Nature Reviews. Disease Primers. 2, (2016).
  2. DiMauro, S., Davidzon, G. Mitochondrial DNA and disease. Annals of Medicine. 37 (3), 222-232 (2005).
  3. El-Hattab, A. W., Craigen, W. J., Scaglia, F.

Explore More Articles

Mitochondrial DysfunctionCybrid ModelIn Vitro ApproachMitochondrial DNA MutationBiochemical InvestigationNuclear BackgroundPathogenicityCytoplast Formation143 Row Zero CellsPolyethylene Glycol Solution

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved