Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This study provides a systematically optimized procedure of CRISPR/Cas9 ribonuclease-based construction of homozygous locust mutants as well as a detailed method for cryopreservation and resuscitation of the locust eggs.

Abstract

The migratory locust, Locusta migratoria, is not only one of the worldwide plague locusts that caused huge economic losses to human beings but also an important research model for insect metamorphosis. The CRISPR/Cas9 system can accurately locate at a specific DNA locus and cleave within the target site, efficiently introducing double-strand breaks to induce target gene knockout or integrate new gene fragments into the specific locus. CRISPR/Cas9-mediated genome editing is a powerful tool for addressing questions encountered in locust research as well as a promising technology for locust control. This study provides a systematic protocol for CRISPR/Cas9-mediated gene knockout with the complex of Cas9 protein and single guide RNAs (sgRNAs) in migratory locusts. The selection of target sites and design of sgRNA are described in detail, followed by in vitro synthesis and verification of the sgRNAs. Subsequent procedures include egg raft collection and tanned-egg separation to achieve successful microinjection with low mortality rate, egg culture, preliminary estimation of the mutation rate, locust breeding as well as detection, preservation, and passage of the mutants to ensure population stability of the edited locusts. This method can be used as a reference for CRISPR/Cas9 based gene editing applications in migratory locusts as well as in other insects.

Introduction

Gene editing technologies could be used to introduce insertions or deletions into a specific genome locus to artificially modify the target gene on purpose1. In the past years, CRISPR/Cas9 technology has developed rapidly and has a growing scope of applications in various fields of life sciences2,3,4,5,6. The CRISPR/Cas9 system was discovered back in 19877, and widely found in bacteria and archaea. Further research indicated that it was a prokaryotic adaptive ....

Protocol

1. Target site selection and sgRNA design

  1. Collect as much sequence information as possible for the gene of interest through literature research and/or searching for the mRNA or coding DNA sequence (CDS) of the gene at NCBI and locust database24.
  2. Compare the sequence of the interested gene to its genomic DNA sequence to distinguish the exon and intron regions.
  3. Select a candidate region for target site design based on the research purpose. Design primer pairs to amplify the candidate region fragment and verify its wild-type sequence by sequencing analysis of the PCR product.
    NOTE: There are ....

Representative Results

This protocol contains the detailed steps for generating homozygous mutants of the migratory locusts with the RNP consisting of Cas9 protein and in vitro synthesized sgRNA. The following are some representative results of CRISPR/Cas9-mediated target gene knockout in locusts, including target selection, sgRNA synthesis and verification (Figure 1A), egg collection and injection, mutant screening and passaging, cryopreservation, and resuscitation of the homozygous eggs.

Discussion

Locusts have been among the most devastating pests to agriculture since the civilization of human beings23. CRISPR/Cas9-based genome editing technology is a powerful tool for providing better knowledge of the biological mechanisms in locusts as well as a promising pest control strategy. Thus, it is of great benefit to develop an efficient and easy-to-use method of CRISPR/Cas9-mediated construction of homozygous locust mutants. Although some great works have been reported and provided some basic wo.......

Disclosures

The authors declare that they have no conflicts of interest.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32070502, 31601697, 32072419 and the China Postdoctoral Science Foundation (2020M672205).

....

Materials

NameCompanyCatalog NumberComments
10×NEBuffer r3.1New England BiolabsB7030S The buffer of  in vitro Cas9 cleavage assays
2xEs Taq MasterMix (Dye)CwbioCW0690For gene amplification
2xPfu MasterMix (Dye)CwbioCW0686For gene amplification
CHOPCHOPOnline website for designing sgRNAs, http://chopchop.cbu.uib.no/.
CRISPOROnline website for designing sgRNAs, http://crispor.org.
CRISPRdirectOnline website for designing sgRNAs, http://crispr.dbcls.jp/.
Electrophoresis power supplyLIUYI BIOLOGYDYY-6DSeparation of nucleic acid molecules of different sizes
Eppendorf TubeEppendorf30125177For sample collection, etc.
Fine brushesAnnigoni1235For cleaning and isolating eggs. Purchased online.
Flaming/brown micropipette pullerSutter InstrumentP97For making the microinjection needles
Gel Extraction KitCwbioCW2302DNA recovery and purification
Gel Imaging Analysis SystemOLYMPUSGel Doc XRObserve the electrophoresis results
GeneTouch PlusBioerB-48DAFor gene amplification
Glass electrode capillaryGairdnerGD-102For making injection needles with a micropipette Puller
IncubatorMEMMERTINplus55For migratory locust embryo culture
Metal bathTIANGENAJ-800For heating the sample
Micro autoinjectorEppendorf5253000068Microinjection of embryos early in development
Micro centrifugeAllshengMTV-1Used for mixing reagents
MicrogrinderNARISHIGEEG-401To ground the tip of injection needle
MicroloaderEppendorf5242956003For loading solutions into the injection needles.
Micromanipulation systemEppendorfTransferMan 4rAn altinative manipulation system for microinjection
MicroscopecnoptecSZ780For microinjection
Motor-drive ManipulatorNARISHIGEMM-94For controling the position of the micropipette during the microinjection precedure
Multi-Sample Tissue GrinderjingxinTissuelyser-64Grind and homogenize the eggs
ovipisition potChangShengYuanYiCS-11Filled with wet sterile sand for locust ovipositing in it. The oocysts are collected from this container. Purchased online.
ParafilmParafilmMPM996For wrapping the petri dishes.
pEASY-T3 Cloning KitTransGen BiotechCT301-01For TA cloning
Petri dishNEST752001For culture and preservation of  the eggs.
PipettorEppendorfResearch®plus For sample loading
plastic culture cupFor rearing locusts seperately and any plastic cup big enough (not less than 1000 mL in volume) will do. Purchased online.
Precision gRNA Synthesis KitThermoA29377For sgRNA synthesis
Primer PremierPREMIER BiosoftPrimer Premier 5.00For primer design
SnapGeneInsightful ScienceSnapGene®4.2.4For analyzing  sequences
Steel ballsHuaXinGangQiuHXGQ60For sample grinding.Purchased online.
TipsbioleafD781349 For sample loading
Trans DNA Marker IITransGen BiotechBM411-01Used to determine gene size
TrueCut Cas9 Protein v2ThermoA36496Cas9 protein
UniversalGen DNA KitCwbioCWY004For genomic DNA extraction
VANNAS ScissorsElectron Microscopy Sciences72932-01For cutting off the antennae
WheatTo generate wheat seedlings as the food for locusts. Bought from local farmers.
ZiFiTOnline website for designing sgRNAs, http://zifit.partners.org/ZiFiT/ChoiceMenu.aspx.

References

  1. Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature. 578 (7794), 229-236 (2020).
  2. van Haasteren, J., Li, J., Scheideler, O. J., Murthy, N., Schaffer, D. V. The delivery challenge: fulfilling the ....

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

CRISPR Cas9Homozygous MutantsMigratory LocustAgricultural PestGene EditingMicroinjectionEgg CollectionMutant ScreeningHomozygous MaintenanceRibonucleoproteinInjection NeedleEgg TanningInjection ParametersIncubation

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved