A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This study provides a systematically optimized procedure of CRISPR/Cas9 ribonuclease-based construction of homozygous locust mutants as well as a detailed method for cryopreservation and resuscitation of the locust eggs.
The migratory locust, Locusta migratoria, is not only one of the worldwide plague locusts that caused huge economic losses to human beings but also an important research model for insect metamorphosis. The CRISPR/Cas9 system can accurately locate at a specific DNA locus and cleave within the target site, efficiently introducing double-strand breaks to induce target gene knockout or integrate new gene fragments into the specific locus. CRISPR/Cas9-mediated genome editing is a powerful tool for addressing questions encountered in locust research as well as a promising technology for locust control. This study provides a systematic protocol for CRISPR/Cas9-mediated gene knockout with the complex of Cas9 protein and single guide RNAs (sgRNAs) in migratory locusts. The selection of target sites and design of sgRNA are described in detail, followed by in vitro synthesis and verification of the sgRNAs. Subsequent procedures include egg raft collection and tanned-egg separation to achieve successful microinjection with low mortality rate, egg culture, preliminary estimation of the mutation rate, locust breeding as well as detection, preservation, and passage of the mutants to ensure population stability of the edited locusts. This method can be used as a reference for CRISPR/Cas9 based gene editing applications in migratory locusts as well as in other insects.
Gene editing technologies could be used to introduce insertions or deletions into a specific genome locus to artificially modify the target gene on purpose1. In the past years, CRISPR/Cas9 technology has developed rapidly and has a growing scope of applications in various fields of life sciences2,3,4,5,6. The CRISPR/Cas9 system was discovered back in 19877, and widely found in bacteria and archaea. Further research indicated that it was a prokaryotic adaptive immune system that depends on the RNA-guided nuclease Cas9 to fight against phages8. The artificially modified CRISPR/Cas9 system mainly consists of two components, a single guide RNA (sgRNA) and the Cas9 protein. The sgRNA is made up of a CRISPR RNA (crRNA) complementary to the target sequence and an auxiliary trans-activating crRNA (tracrRNA), which is relatively conserved. When the CRISPR/Cas9 system is activated, the sgRNA forms a ribonucleoprotein (RNP) with the Cas9 protein and guides Cas9 to its target site via the base pairing of RNA-DNA interactions. Then, the double-strand DNA can be cleaved by the Cas9 protein and as a result, the double-strand break (DSB) emerges near the protospacer adjacent motif (PAM) of the target site9,10,11,12. To mitigate the damage caused by the DSBs, cells would activate comprehensive DNA damage responses to efficiently detect the genomic damages and initiate the repair procedure. There are two distinct repair mechanisms in the cell: non-homologous end joining (NHEJ) and homology-directed repair (HDR). NHEJ is the most common repair pathway that can repair DNA double-strand breaks quickly and prevents cell apoptosis. However, it is error-prone because of leaving small fragments of insertions and deletions (indels) near the DSBs, which usually results in an open reading frame shift and thus can lead to gene knock-out. In contrast, homologous repairment is quite a rare event. On the condition that there is a repair template with sequences homologous to the context of the DSB, cells would occasionally repair the genomic break according to the nearby template. The result of HDR is that the DSB is precisely repaired. Especially, if there is an additional sequence between the homologous sequences in the template, they would be integrated into the genome through HDR, and in this way, the specific gene insertions could be realized13.
With the optimization and development of the sgRNA structures and Cas9 protein variants, the CRISPR/Cas9-based genetic editing system has also been successfully applied in research of insects, including but not limited to Drosophila melanogaster, Aedes aegypti, Bombyx mori, Helicoverpa Armigera, Plutella xylostella, and Locusta migratoria14,15,16,17,18,19. To the best of the authors' knowledge, although RNPs consisting of the Cas9 protein and in vitro transcribed sgRNA have been used for locust genome editing20,21,22, a systematic and detailed protocol for CRISPR/Cas9 ribonuclease mediated construction of homozygous mutants of the migratory locust is still lacking.
The migratory locust is an important agricultural pest that has a global distribution and poses substantial threats to food production, being especially harmful to gramineous plants, such as wheat, maize, rice, and millet23. Gene function analysis based on genome editing technologies can provide novel targets and new strategies for the control of migratory locusts. This study proposes a detailed method for knocking out migratory locust genes via the CRISPR/Cas9 system, including the selection of target sites and design of sgRNAs, in vitro synthesis and verification of the sgRNAs, microinjection and culture of eggs, estimation of mutation rate at the embryonic stage, detection of mutants as well as passage and preservation of the mutants. This protocol could be used as a basal reference for manipulation of the vast majority of locust genes and can provide valuable references for genome editing of other insects.
1. Target site selection and sgRNA design
2. Synthesis and verification of the sgRNA in vitro
3. Microinjection and culture of the eggs
4. Mutation rate estimation and the screening of mutants
5. Establishment and passaging of mutant lines
6. Egg cryopreservation and resuscitation
This protocol contains the detailed steps for generating homozygous mutants of the migratory locusts with the RNP consisting of Cas9 protein and in vitro synthesized sgRNA. The following are some representative results of CRISPR/Cas9-mediated target gene knockout in locusts, including target selection, sgRNA synthesis and verification (Figure 1A), egg collection and injection, mutant screening and passaging, cryopreservation, and resuscitation of the homozygous eggs.
Locusts have been among the most devastating pests to agriculture since the civilization of human beings23. CRISPR/Cas9-based genome editing technology is a powerful tool for providing better knowledge of the biological mechanisms in locusts as well as a promising pest control strategy. Thus, it is of great benefit to develop an efficient and easy-to-use method of CRISPR/Cas9-mediated construction of homozygous locust mutants. Although some great works have been reported and provided some basic wo...
The authors declare that they have no conflicts of interest.
This work was supported by the National Natural Science Foundation of China (32070502, 31601697, 32072419 and the China Postdoctoral Science Foundation (2020M672205).
Name | Company | Catalog Number | Comments |
10×NEBuffer r3.1 | New England Biolabs | B7030S | The buffer of in vitro Cas9 cleavage assays |
2xEs Taq MasterMix (Dye) | Cwbio | CW0690 | For gene amplification |
2xPfu MasterMix (Dye) | Cwbio | CW0686 | For gene amplification |
CHOPCHOP | Online website for designing sgRNAs, http://chopchop.cbu.uib.no/. | ||
CRISPOR | Online website for designing sgRNAs, http://crispor.org. | ||
CRISPRdirect | Online website for designing sgRNAs, http://crispr.dbcls.jp/. | ||
Electrophoresis power supply | LIUYI BIOLOGY | DYY-6D | Separation of nucleic acid molecules of different sizes |
Eppendorf Tube | Eppendorf | 30125177 | For sample collection, etc. |
Fine brushes | Annigoni | 1235 | For cleaning and isolating eggs. Purchased online. |
Flaming/brown micropipette puller | Sutter Instrument | P97 | For making the microinjection needles |
Gel Extraction Kit | Cwbio | CW2302 | DNA recovery and purification |
Gel Imaging Analysis System | OLYMPUS | Gel Doc XR | Observe the electrophoresis results |
GeneTouch Plus | Bioer | B-48DA | For gene amplification |
Glass electrode capillary | Gairdner | GD-102 | For making injection needles with a micropipette Puller |
Incubator | MEMMERT | INplus55 | For migratory locust embryo culture |
Metal bath | TIANGEN | AJ-800 | For heating the sample |
Micro autoinjector | Eppendorf | 5253000068 | Microinjection of embryos early in development |
Micro centrifuge | Allsheng | MTV-1 | Used for mixing reagents |
Microgrinder | NARISHIGE | EG-401 | To ground the tip of injection needle |
Microloader | Eppendorf | 5242956003 | For loading solutions into the injection needles. |
Micromanipulation system | Eppendorf | TransferMan 4r | An altinative manipulation system for microinjection |
Microscope | cnoptec | SZ780 | For microinjection |
Motor-drive Manipulator | NARISHIGE | MM-94 | For controling the position of the micropipette during the microinjection precedure |
Multi-Sample Tissue Grinder | jingxin | Tissuelyser-64 | Grind and homogenize the eggs |
ovipisition pot | ChangShengYuanYi | CS-11 | Filled with wet sterile sand for locust ovipositing in it. The oocysts are collected from this container. Purchased online. |
Parafilm | ParafilmM | PM996 | For wrapping the petri dishes. |
pEASY-T3 Cloning Kit | TransGen Biotech | CT301-01 | For TA cloning |
Petri dish | NEST | 752001 | For culture and preservation of the eggs. |
Pipettor | Eppendorf | Research®plus | For sample loading |
plastic culture cup | For rearing locusts seperately and any plastic cup big enough (not less than 1000 mL in volume) will do. Purchased online. | ||
Precision gRNA Synthesis Kit | Thermo | A29377 | For sgRNA synthesis |
Primer Premier | PREMIER Biosoft | Primer Premier 5.00 | For primer design |
SnapGene | Insightful Science | SnapGene®4.2.4 | For analyzing sequences |
Steel balls | HuaXinGangQiu | HXGQ60 | For sample grinding.Purchased online. |
Tips | bioleaf | D781349 | For sample loading |
Trans DNA Marker II | TransGen Biotech | BM411-01 | Used to determine gene size |
TrueCut Cas9 Protein v2 | Thermo | A36496 | Cas9 protein |
UniversalGen DNA Kit | Cwbio | CWY004 | For genomic DNA extraction |
VANNAS Scissors | Electron Microscopy Sciences | 72932-01 | For cutting off the antennae |
Wheat | To generate wheat seedlings as the food for locusts. Bought from local farmers. | ||
ZiFiT | Online website for designing sgRNAs, http://zifit.partners.org/ZiFiT/ChoiceMenu.aspx. |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved