Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Neutron backscattering spectroscopy offers a nondestructive and label-free access to the ps-ns dynamics of proteins and their hydration water. The workflow is presented with two studies on amyloid proteins: on the time-resolved dynamics of lysozyme during aggregation and on the hydration water dynamics of tau upon fiber formation.

Abstract

Neutron scattering offers the possibility to probe the dynamics within samples for a wide range of energies in a nondestructive manner and without labeling other than deuterium. In particular, neutron backscattering spectroscopy records the scattering signals at multiple scattering angles simultaneously and is well suited to study the dynamics of biological systems on the ps-ns timescale. By employing D2O-and possibly deuterated buffer components-the method allows monitoring of both center-of-mass diffusion and backbone and side-chain motions (internal dynamics) of proteins in liquid state.

Additionally, hydration water dynamics can be studied by employing powders of perdeuterated proteins hydrated with H2O. This paper presents the workflow employed on the instrument IN16B at the Institut Laue-Langevin (ILL) to investigate protein and hydration water dynamics. The preparation of solution samples and hydrated protein powder samples using vapor exchange is explained. The data analysis procedure for both protein and hydration water dynamics is described for different types of datasets (quasielastic spectra or fixed-window scans) that can be obtained on a neutron backscattering spectrometer.

The method is illustrated with two studies involving amyloid proteins. The aggregation of lysozyme into µm sized spherical aggregates-denoted particulates-is shown to occur in a one-step process on the space and time range probed on IN16B, while the internal dynamics remains unchanged. Further, the dynamics of hydration water of tau was studied on hydrated powders of perdeuterated protein. It is shown that translational motions of water are activated upon the formation of amyloid fibers. Finally, critical steps in the protocol are discussed as to how neutron scattering is positioned regarding the study of dynamics with respect to other experimental biophysical methods.

Introduction

The neutron is a charge-less and massive particle that has been successfully used over the years to probe samples in various fields from fundamental physics to biology1. For biological applications, small-angle neutron scattering, inelastic neutron scattering, and neutron crystallography and reflectometry are extensively used2,3,4. Inelastic neutron scattering provides an ensemble-averaged measurement of the dynamics without requiring specific labeling per se, and a signal quality that does not depend on the size or the protein

Protocol

1. Prepare the deuterated buffer for proteins in the liquid state

  1. Dissolve all components of the buffer in pure D2O.
  2. If the pH electrode was calibrated in H2O, adjust the pD according to the formula pD = pH + 0.4 using NaOD or DCl34.
    NOTE: The use of D2O instead of H2O might affect protein solubility and the buffer conditions might need to be adapted, (e.g., by a slight change in salt concentration).

Representative Results

The aggregation of lysozyme into particulates was performed at 90 °C with a protein concentration of 50 mg/mL in a deuterated buffer (0.1 M NaCl at pD 10.5). The formation of particulates is triggered by the temperature increase to 90 °C and occurs within 6 h (Supplemental Figure S8). The data acquisition was performed on IN16B, as described in the protocol above (data are permanently curated by the ILL and accessible at http://dx.doi.org/10.5291/ILL-DATA.8-04-811).

Discussion

Neutron spectroscopy is the only method that allows probing the ensemble-averaged ps-ns dynamics of protein samples regardless of the size of the protein or the complexity of the solution when deuteration is used6. Specifically, by probing self-diffusion of protein assemblies in solution, the hydrodynamic size of such assemblies can be unambiguously determined. Nonetheless, the method is commonly limited by the low neutron flux, which implies long acquisition times and the requirement of high amou.......

Acknowledgements

The authors are grateful to Michaela Zamponi at the Jülich Centre for Neutron Science at the Heinz Maier-Leibnitz Zentrum, Garching, Germany, for part of the neutron scattering experiments conducted on the instrument SPHERES. This work has benefited from the activities of the Deuteration Laboratory (DLAB) consortium funded by the European Union under Contracts HPRI-2001-50065 and RII3-CT-2003-505925, and from UK Engineering and Physical Sciences Research Council (EPSRC)-funded activity within the Institut Laue Langevin EMBL DLAB under Grants GR/R99393/01 and EP/C015452/1. Support by the European Commission under the 7th Framework Programme through the Key Action:....

Materials

NameCompanyCatalog NumberComments
Aluminum sample holderNot commercially available. Either the local contact on the instrument can provide them or they can be manufactured based on a technical drawing that can be provided by the local contact.
Deuterium chloride, 35 wt. % in D2O, ≥99 atom % DSigma-Aldrich
543047
Deuterium oxide (D, 99.9%)EurisotopDLM-4DR-PK
Dow Corning high-vacuum silicone greaseSigma-AldrichZ273554-1EA
Ethanol 96%, EMSURE Reag. Ph EurSigma-Aldrich1.5901
Glass dessicatorVWR  75871-660
Glass dessicator plate, 140 mmVWR89038-068
Indium wire, 1.0 mm (0.04 in) dia, Puratronic, 99.999%Alfa Aesar00470.G1
Lysozyme from chicken egg white dialyzed, lyophilized, powder, ~100,000 U/mgSigma-Aldrich62970
nPDynv3.xsee github.com/kpounot/nPDyn, model functions fot fitting also included in the software
OHAUS AX324 Adventurer balance, internal calibrationDutscher92641
Phosphorus pentoxide, ReagentPlus, 99%Sigma-Aldrich214701
Pipette ErgoOne 0.5-10 μLStarlabS7100-0510
Pipette ErgoOne 100-1,000 μLStarlabS7100-1000
Pipette ErgoOne 20-200 μLStarlabS7100-2200
Pipette tip TipOne 1,000 μLStarlabS1111-6001
Pipette tip TipOne 10 μLStarlabS1111-3200
Pipette tip TipOne 200 μLStarlabS1111-0206
Sodium deuteroxide solution, 40 wt. % in D2O, 99.5 atom % DSigma-Aldrich372072

References

Explore More Articles

Neutron BackscatteringNeutron SpectroscopyProtein DynamicsHydration WaterPicosecond nanosecond TimescaleAlzheimer sParkinson sSample PreparationHydrogen deuterium Exchange

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved