A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol describes a high-throughput clustered regularly interspaced short palindromic repeats (CRISPR) gene editing workflow for microRNA cluster network analysis that allows the rapid generation of a panel of genetically modified cell lines carrying unique miRNA cluster member deletion combinations as large as 35 kb within a single experiment.
MicroRNAs (miRNAs) have emerged as important cellular regulators (tumor suppressors, pro-oncogenic factors) of cancer and metastasis. Most published studies focus on a single miRNA when characterizing the role of small RNAs in cancer. However, ~30% of human miRNA genes are organized in clustered units that are often co-expressed, indicating a complex and coordinated system of noncoding RNA regulation. A clearer understating of how clustered miRNA networks function cooperatively to regulate tumor growth, cancer aggressiveness, and drug resistance is required before translating noncoding small RNAs to the clinic.
The use of a high-throughput clustered regularly interspaced short palindromic repeats (CRISPR)-mediated gene editing procedure has been employed to study the oncogenic role of a genomic cluster of seven miRNA genes located within a locus spanning ~35,000 bp in length in the context of prostate cancer. For this approach, human cancer cell lines were infected with a lentivirus vector for doxycycline (DOX)-inducible Cas9 nuclease grown in DOX-containing medium for 48 h. The cells were subsequently co-transfected with synthetic trans-activating CRISPR RNA (tracrRNA) complexed with genomic site-specific CRISPR RNA (crRNA) oligonucleotides to allow the rapid generation of cancer cell lines carrying the entire miRNA cluster deletion and individual or combination miRNA gene cluster deletions within a single experiment.
The advantages of this high-throughput gene editing system are the ability to avoid time-consuming DNA vector subcloning, the flexibility in transfecting cells with unique guide RNA combinations in a 24-well format, and the lower-cost PCR genotyping using crude cell lysates. Studies using this streamlined approach promise to uncover functional redundancies and synergistic/antagonistic interactions between miRNA cluster members, which will aid in characterizing the complex small noncoding RNA networks involved in human disease and better inform future therapeutic design.
Better research tools are needed to investigate the contribution of noncoding RNAs in human disease. MiRNA dysregulation is often observed in human disorders such as cancer when comparing the expression profiles of these small noncoding RNAs in the tissues and body fluids (e.g., blood, urine) of cancer patients versus noncancer, healthy individuals, employing microarrays, quantitative real-time PCR (qRT-PCR), and next-generation deep sequencing technologies1,2. Recent work has characterized a large subset of these miRNAs as tumor suppressor, oncogenic, and metastasis factors that control tumor formation, disease progression, and drug resistance. Experimental overexpression and/or downregulation/loss of miRNAs result in functional and pleiotropic consequences in the cell, reflecting the wide range of cancer-associated activities these noncoding RNAs coordinate - growth, apoptosis, differentiation, chromatin remodeling, angiogenesis, epithelial to mesenchymal (EMT) and MET transitions, metabolism, and immune response3.
MiRNAs are encoded as single genes or reside in genomic clusters, which are transcribed in the nucleus and extensively processed before generating the biologically mature, single-stranded ~22 nucleotide (nt) miRNA species localized in the cytoplasm4. These small RNAs exert their effects post-transcriptionally and act as negative gene regulators that bind to messenger RNA (mRNA) targets in a sequence-specific manner to bring the catalytic RNA-induced silencing complex (RISC) to the mRNA site, resulting in mRNA degradation and/or a block in protein translation. MiRNAs are an extremely abundant class of noncoding RNAs in animal systems, and 2,654 mature miRNAs exist in the human genome (miRBase release 22.1)5. MiRNAs typically associate with incomplete complementarity to their mRNA targets4. Therefore, a single miRNA can regulate tens to hundreds of distinct mRNA targets and functionally impact a large range of biological pathways. To add to the complexity of miRNA-based mechanisms, a single mRNA can be regulated by multiple, distinct miRNAs. It is, thus, challenging to investigate how miRNA dysregulation disrupts the body's homeostatic balance and leads to human malignancy.
The majority of published studies have focused on a single miRNA when characterizing their role in disease events. However, ~30% of human miRNA genes are organized in clustered units (typically ~10 kilobases [kb]) that are often transcribed in the same orientation and co-expressed, indicating a coordinated and complex system of noncoding RNA regulation6. The largest polycistronic human miRNA cluster is the 14q32 cluster comprising 54 miRNA precursors. One of the most well-studied clustered miRNA units associated with human cancers is the miR-17-92 polycistronic cluster comprised of miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92-1 residing within intron 3 of the noncoding RNA, c13orf25. The miR-17-92 cluster is frequently amplified in hematopoietic malignancies and overexpressed in solid tumors and has established oncogenic roles in promoting cell cycle progression, apoptosis, and angiogenesis7. In addition, the tumor suppressive miR-15a and miR-16-1 cluster located within the intron of the noncoding gene Leu2 is often deleted in leukemias and downregulated in a large range of cancers, functioning to block tumor growth by targeting the antiapoptotic gene BCL2 and additional cell cycle progression genes8. The miR-888 cluster is elevated in patients with high-grade prostate cancer and consists of seven miRNA genes (miR-892c, -890, -888, -892a, -892b, -891b, and -891a) located on human chromosome Xq27.39,10.
The miR-888 cluster maps within the HPCX1 locus (Hereditary Prostate Cancer, X-linked 1) spanning Xq27-2, which was identified by linkage analysis of hereditary prostate cancer family pedigrees11,12,13,14,15,29. Functional characterization of individual miR-888 clustered members using conventional miRNA misexpression tools - miRNA mimics and antisense inhibitors - indicated that these miRNAs play overlapping roles in regulating prostate tumor growth and invasion9,10. However, these experimental methods do not lend themselves easily to studying how multiple miR-888 clustered members act synergistically or antagonistically in a noncoding RNA network to control tissue homeostasis and cancer progression. This described streamlined protocol using high-throughput CRISPR gene editing technology is modified to molecularly dissect miRNA clusters associated with human cancers (e.g., miR-888 cluster) to bridge this knowledge gap.
Bacterial CRISPR and CRISPR-associated (cas) genes mediate adaptive immunity against bacteriophages16. The discovery of this ancient procaryotic surveillance system was quickly adapted as an efficient scientific tool to easily target any desired genomic locus and make DNA sequence alterations within a large range of animal systems and cell types both in vitro and in vivo16,17. This technique holds great promise as an effective method to interrogate miRNA networks in the context of human disease. To this end, this high-throughput CRISPR gene editing protocol to study the miR-888 cluster spanning ~35 kb on human chromosome X in immortalized human prostate cancer cell lines (LNCaP, PC3-ML) is constructed to interrogate how cluster members coordinate cancer progression pathways. This approach can be applied to characterizing any miRNA cluster and allows investigators to rapidly generate human cell lines carrying the entire miRNA cluster deletion and individual and combination miRNA gene cluster deletions within a single experiment.
In this procedure, stable cell lines are established carrying a doxycycline (DOX)-inducible lentiviral expression system that enables the investigator to control Streptococcus pyogenes CRISPR-associated endonuclease Cas9 (csn1) gene expression through the constitutive DOX-inducible promoter TRE3G. The Tet-On 3G bipartite system involves a constitutive human elongation factor 1 alpha (hEF1alpha) promoter to drive the transcription of both the Tet-On 3G gene and the blasticidin resistance gene (BlastR) as a bicistronic transcript. The Tet-On 3G transactivator protein only binds to the TRE3G promoter in the presence of DOX, resulting in robust Cas9 transcription. In the absence of DOX, there is no or very minimal basal Cas9 expression. Therefore, the investigator can induce high Cas9 protein production in cells grown in media supplemented with DOX during the CRISPR gene editing steps and control for rapid CAS9 protein clearance upon DOX withdrawal.
This protocol also describes the design of synthetic CRISPR RNA (crRNA) oligonucleotides targeting regions flanking the entire miRNA cluster, individual miRNA hairpin (premiRNA) regions, and/or subsets of miRNA genes within the cluster. Each designed crRNA contains a unique 5'-terminal 20 nt guide sequence (complementary to the genomic sequence of interest to be targeted), followed by an invariant 22 nt S. pyogenes repeat sequence (5'-XXXXXXXXXXXXXXXXXXXX-GUUUUAGAGCUAUGCUGUUUUG-3') that enables base-pairing with the universal trans-activating CRISPR RNA (tracrRNA) oligonucleotides18. Together, the annealed crRNA and tracrRNA (mixed 1:1 ratio) function as the guide RNA for this protocol (Figure 1A). In each experiment, two synthetic guide RNAs are transfected into DOX-induced cells to associate and escort the bacterial Cas9 protein to the genomic DNA sites (5' and 3') flanking the miRNA cluster region targeted for removal (Figure 1B).
A protospacer adjacent motif (PAM) sequence (5'-NGG-3' for wild type S. pyogenes Cas9) must be present in the cell genome and located immediately adjacent to the 20 nt DNA sequence targeted by the guide RNA17. The PAM sequence serves as a binding signal and positions the catalytic region of the endonuclease Cas9 enzyme on the targeted genomic DNA site, subsequently leading to directed, double-stranded (ds) DNA cleavage located ~3 nt upstream of the PAM. The cell's DNA repair machinery repairs the cleaved DNA ends, which can result in perfect ligation, but often nonhomologous end joining (NHEJ) occurs, causing small insertions or deletions (indels) at the repair site. Since miRNAs are noncoding genes often located within intergenic and intronic regions, these indels carry a low risk of creating unwanted nonsense/missense mutations.
By employing synthetic RNA oligonucleotides (annealed crRNA and tracrRNA, 1:1 molar ratio) encoding for the guide RNA complex in these experiments, this gene knockout strategy avoids time-consuming DNA vector subcloning and allows for huge flexibility in transfecting unique guide RNA combinations to cells in a 24-well format. Preparation of crude cell lysates for PCR genotype screening also avoids expensive and time-consuming DNA purification methods, while allowing for streamlined single colony cell line generation and phenotypic analysis. Indeed, this high-throughput CRISPR gene editing protocol has been used successfully to transfect cultured prostate cancer cell lines (LNCaP, PC3-ML) with 32 unique guide RNA combinations in a single experiment and generate knockout lines carrying deletions for the entire ~35 kb miR-888 cluster region; smaller deletion combinations for miR-888 cluster members belonging to the miR-743 and miR-891a families; as well as deletions for individual miRNA members within the miR-888 cluster. Studies like these will provide a clearer understating of how clustered miRNAs function cooperatively to regulate tumor growth, aggressiveness, and drug resistance before translating miRNAs to the clinic as therapeutic and diagnostic tools.
1. Preparation for CRISPR gene editing and guide RNA design to generate miRNA cluster knockout cell lines
2. Generation of stable lentiviral cell lines carrying the DOX-inducible Cas9 expression cassette
NOTE: Perform all cell culture and virus work in a certified biosafety hood using BSL2 procedures and aseptic technique.
3. Performing CRISPR reactions by Cas9 induction and synthetic guide RNA transfection of cells using a high-throughput format
NOTE: A workflow diagram is shown in Figure 1.
4. PCR genotyping of CRISPR cell lines using crude cell lysates
This high-throughput CRISPR deletion protocol was successfully employed using transfection of Cas9-inducible LNCaP and PC3-ML human cancer cell lines with synthetic oligonucleotide guide RNAs targeting the miR-888 cluster, which were studied in the context of prostate cancer. The miR-888 cluster was initially identified in an expression profiling screen as being elevated in prostate cancer patients with high-grade disease compared to low-grade and noncancer patients9,1...
This CRISPR gene editing procedure allows the investigator to quickly generate an entire panel of cell lines carrying unique miRNA cluster deletion combinations. The transfection of synthetic guide RNAs composed of 5' and 3' genomic site-specific crRNAs annealed with synthetic tracrRNA (1:1 molar ratio) in this protocol avoids time-consuming plasmid vector subcloning and allows for a more flexible and high-throughput experimental design using a 24-well format. The generation of cell lines carrying a DOX-inducible...
The authors have no conflicts of interest to disclose.
PC3-ML cell lines were kindly provided by Mark Stearn (Drexel University College of Medicine). Justin Toxey aided in PCR genotyping. This work was supported by a Breedan Adams Foundation Grant, a Ryan Translational Research Fund, and a Commonwealth Health Research Board Grant (CHRB-274-11-20) to AE-K.
Name | Company | Catalog Number | Comments |
0.2 mL PCR tubes, flat cap | Fisher | 14-230-225 | Plasticware |
1.5 mL Microcentrifuge Tubes | Seal-Rite | 1615-5500 | Plasticware |
24-well tissue culture plate | Corning Costar | 09761146 | Plasticware |
5x Phusion HF Buffer | Thermo Scientific | F-518L | PCR reagent, genotyping |
6-well tissue culture plate | Fisher | FB012927 | Plasticware |
96-well tissue culture plate | Falcon | 08-772-2C | Plasticware |
Anti-CRISPR-Cas9 antibody [7A9-3A3], Mouse monoclonal | AbCam | ab191468 | Western blot reagent; 160 kDa; dilution 1:200 |
Antibiotic-Antimycotic (100x) | Gibco | 15240062 | Tisuue culture reagent |
BLAST nucleotide search engine | National Center for Biotechnology Information | NA | Freeware; website: blast.ncbi.nlm.nih.gov |
Blasticidin S, Hydrochloride, Streptomyces griseochromogenes | Calbiochem | CAS 589205 | CRISPR reagent; Chemical, Working stock = 1 mg/mL in water |
Countess 3 Automated Cell Counter | Invitrogen | A50298 | Equipment; Cell counter |
Cryogenic tubes | Thermo Scientific | 50001012 | Plasticware |
Dharmacon CRISPR Design Tool | Horizon Discovery Ltd. | NA | Freeware; website: horizondiscovery.com/en/ordering-and-calculation-tools/crispr-dna-region-designer |
DharmaFECT siRNA Transfection Reagent #2 | Dharmacon, Inc. | T-2002-02 | Transfection reagent; LNCaP and PC3-ML cell lines |
Dimethyl sulfoxide (DMSO) | Fisher | BP231100 | Tisuue culture reagent |
DMEM Medium with L-Glutamine, 4.5g/L Glucose and Sodium Pyruvate | Corning | MT10013CV | Tisuue culture reagent; Media for PC3-ML cells |
Doxycycline Hydrochloride, Ready Made Solution | Sigma-Aldrich | D3072-1ML | CRISPR reagent; Chemical, Working stock = 1 mg/mL stock in water |
DPBS, no calcium, no magnesium | Gibco | 14190144 | Tisuue culture reagent |
Edit-R CRISPR-Cas9 Synthetic tracrRNA, 20 nmol, designed | Dharmacon, Inc. | U-002005-20 | CRISPR reagent; Universal tracrRNA oligonucleotides |
Edit-R Modified Synthetic crRNA, desalted/deprotected, 2 nmol | Dharmacon, Inc. | crRNA-460XXX | CRISPR reagent; Designed crRNA oligonucleotides |
EditR Inducible Lentiviral hEF1aBlastCas9 Nuclease Particles, 50 μL, 107 TU/mL | Dharmacon, Inc. | VCAS11227 | CRISPR reagent; Lenti-iCas9; Doxycycline-inducible lentiviral Streptococcus pyogenes Cas9 vector system |
Ensembl genomic viewer | Ensembl | NA | Freeware; website: [ensembl.org] Use: Genome browser to identify a nucleotide seuqnces containing the miRNA cluster and surrounding gene/regulatory sequences. |
GAPDH Antibody (FL-335), rabbit polyclonal | Santa Cruz Biotechnology | sc25778 | Western blot reagent; 37 kDa; dilution 1:500 |
Gel/PCR DNA Fragment Extraction Kit | IBI Scientific | IB47010 | Nucleic acid gel electrophoresis reagent |
Gibco Fetal Bovine Serum, certified | Gibco | 16000044 | Tisuue culture reagent |
Hexadimethrine bromide | MilliporeSigma | H9268 | CRISPR reagent; Chemical, Working stock = 0.8 mg/mL |
Immobilon-FL PVDF Membrane | MilliporeSigma | IPFL10100 | Western blot reagent; nitrocellulose |
Intercept (TBS) Blocking Buffer | LI-COR | 927-60001 | Western blot reagent |
IRDye 680RD Goat anti-Mouse IgG Secondary Antibody | LI-COR | 926-68070 | Western blot reagent |
IRDye 800CW Goat anti-Rabbit IgG Secondary Antibody | LI-COR | 926-32211 | Western blot reagent |
Microcentrifuge | Eppendorf | 5425 R | Plasticware |
miRBase microRNA viewer | miRBase | NA | Freeware; website: [mirbase.org] Use: Borowser lists all annotated miRNA hairpins, mature miRNA sequences and associated clustered miRNAs mapping within 10 kb. |
NuPAGE 4 to 12%, Bis-Tris, 1.0 mm, Mini Protein Gel, 10-well | Invitrogen | NP0321BOX | Western blot reagent |
Odyssey CLx Imaging System | LI-COR | CLx | Equipment; Western blot imaging |
Opti-MEM Reduced Serum Medium | Gibco | 31985062 | Transfection reagent |
Owl D2 Wide-Gel Electrophoresis System | Owl | D2-BP | Equipment; Nucleic acid gel electrophoresis system |
PCR Primers, designed (single-stranded DNA oligonucleotides) | Integrated DNA Technology | NA | PCR reagent, genotyping |
Phusion High-Fidelity DNA Polymerase (2 U/µL) | Thermo Scientific | F530S | PCR reagent, genotyping |
RIPA Lysis Buffer 10x | MilliporeSigma | 20-188 | Western blot reagent |
Proteinase K Solution (20 mg/mL), RNA grade | Invitrogen | 25530049 | PCR reagent, genotyping |
RNase A, DNase and protease-free (10 mg/mL) | Thermo Scientific | EN0531 | PCR reagent, genotyping |
RPMI 1640 Medium | Gibco | MT10041CV | Tisuue culture reagent; Media for LNCaP cells |
SnapGene Viewer | Snap Gene | NA | Freeware; website: [snapgene.com] Use: DNA sequence annotation software program to create a DNA file for gRNA design and which highlights the miRNA cluster locus (intergenic, intronic), each individual miRNA hairpin sequence belonging to the miRNA cluster, and other nearby coding and non-coding genes and/or regulatory features |
TrypLE Select Enzyme (1x), no phenol red | Gibco | 12563029 | Tisuue culture reagent; Recombinant trypsin |
UltraPure Agarose | Invitrogen | 16500100 | Nucleic acid gel electrophoresis reagent |
Veriti 96-Well Fast Thermal Cycler | ThermoFisher Scientific | 4375305 | Equipment |
XCell SureLock Mini-Cell Electrophoresis System | Invitrogen | EI0001 | Equipment; Protein gel electrophoresis system |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved