Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The protocol described here provides detailed instructions on how to analyze genomic regions of interest for microprotein-coding potential using PhyloCSF on the user-friendly UCSC Genome Browser. Additionally, several tools and resources are recommended to further investigate sequence characteristics of identified microproteins to gain insight into their putative functions.

Abstract

Next-generation sequencing (NGS) has propelled the field of genomics forward and produced whole genome sequences for numerous animal species and model organisms. However, despite this wealth of sequence information, comprehensive gene annotation efforts have proven challenging, especially for small proteins. Notably, conventional protein annotation methods were designed to intentionally exclude putative proteins encoded by short open reading frames (sORFs) less than 300 nucleotides in length to filter out the exponentially higher number of spurious noncoding sORFs throughout the genome. As a result, hundreds of functional small proteins called microproteins (<100 amino acids in length) have been incorrectly classified as noncoding RNAs or overlooked entirely.

Here we provide a detailed protocol to leverage free, publicly available bioinformatic tools to query genomic regions for microprotein-coding potential based on evolutionary conservation. Specifically, we provide step-by-step instructions on how to examine sequence conservation and coding potential using Phylogenetic Codon Substitution Frequencies (PhyloCSF) on the user-friendly University of California Santa Cruz (UCSC) Genome Browser. Additionally, we detail steps to efficiently generate multiple species alignments of identified microprotein sequences to visualize amino acid sequence conservation and recommend resources to analyze microprotein characteristics, including predicted domain structures. These powerful tools can be used to help identify putative microprotein-coding sequences in noncanonical genomic regions or to rule out the presence of a conserved coding sequence with translational potential in a noncoding transcript of interest.

Introduction

The identification of the complete set of coding elements in the genome has been a major goal since the initiation of the Human Genome Project, and remains a central objective toward the understanding of biological systems and the etiology of genetic-based diseases1,2,3,4. Advances in NGS techniques have led to the production of whole genome sequences for an extensive number of organisms, including vertebrates, invertebrates, yeast, and plants5. Additionally, high-throughput transcriptional sequencing methods have fur....

Protocol

The protocol outlined below details steps to load and navigate the PhyloCSF browser tracks on the UCSC Genome Browser (generated by Mudge et al.49). For general questions regarding the UCSC Genome Browser, an extensive Genome Browser User's Guide can be found here: https://genome.ucsc.edu/goldenPath/help/hgTracksHelp.html.

1. Loading the PhyloCSF Track Hub to the UCSC Genome Browser

Representative Results

Here we will use the validated microprotein mitoregulin (Mtln) as an example to demonstrate how a conserved sORF will generate a positive PhyloCSF score that can be easily visualized and analyzed on the UCSC Genome Browser. Mitoregulin was previously annotated as a noncoding RNA (formerly human gene ID LINC00116 and mouse gene ID 1500011K16Rik). Comparative genomics and sequence conservation analysis methods played a critical role in its initial discovery40,

Discussion

The protocol presented here provides detailed instructions on how to interrogate genomic regions of interest for microprotein-coding potential using PhyloCSF on the user-friendly UCSC Genome Browser48,49,50,51. As detailed above, PhyloCSF is a powerful comparative genomics algorithm that integrates phylogenetic models and codon substitution frequencies to identify evolutionary signatures that a.......

Acknowledgements

This work was supported by grants from the National Institutes of Health (HL-141630 and HL-160569) and Cincinnati Children's Research Foundation (Trustee Award).

....

Materials

NameCompanyCatalog NumberComments
WebsiteWebsite AddressRequirements
Clustal Omega Multiple Sequence Alignment Toolhttps://www.ebi.ac.uk/Tools/msa/clustalo/Web browserMultiple sequence alignment program for the efficient alignment of FASTA sequences (i.e. for cross-species comparison of identified microproteins)
COXPRESSdbhttps://coxpresdb.jpWeb browserProvides co-regulated gene relationships to estimate gene functions
EMBL-EBI Bioinformatics Tools FAQshttps://www.ebi.ac.uk/seqdb/confluence/display/JDSAT/Bioinformatics+Tools+FAQWeb browserFrequently Asked Questions (FAQs) for EMBL-EBI tools. Includes the color coding key for protein sequence alignments
European Bioinformatics Institute (EMBL-EBI),
Tools and Data Resources
https://www.ebi.ac.uk/services/allWeb browserComprehensive list of freely available websites, tools and data resources
Expasy - Swiss Bioinformatics Resource Portalhttps://www.expasy.orgWeb browserSuite of bioinformatic tools and resources for protein sequence analysis that is maintained by the Swiss Institute of Bioinformatics (SIB)
National Center for Biotechnology Information (NCBI)
Conserved Domain Search
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgiWeb browserSearch tool to identify conserved domains within protein or coding nucleotide sequences
Pfam 35http://pfam.xfam.orgWeb browserProtein family (Pfam) database, provides alignments and classification of protein families and domains
PhyloCSF Track Hub Description https://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=1267045267_TEc99h2oW5Q
edaCd4ir8aZ65ryaD&db=mm10
&c=chr2&g=hub_109801_
PhyloCSF_smooth
Web browserDetailed description of the Smoothed PhyloCSF tracks and PhyloCSF Track Hub
   
   
   
   
   
SignalP 6.0https://services.healthtech.dtu.dk/service.php?SignalP-6.0Web browserPredicts the presence of signal peptides and the location of their cleavage sites
TMHMM - 2.0https://services.healthtech.dtu.dk/service.php?TMHMM-2.0Web browserPrediction of transmembrane helices in proteins
UCSC Genome Browser BLAT Searchhttps://genome.ucsc.edu/cgi-bin/hgBlatWeb browserTool used to find genomic regions using DNA or protein sequence information
UCSC Genome Browser Gatewayhttps://genome.ucsc.edu/cgi-bin/hgGatewayWeb browserDirect link to the UCSC Genome Browser Gateway
UCSC Genome Browser Homehttps://genome.ucsc.edu/Web browserHome website for the UCSC Genome Browser
UCSC Genome Browser Track Data Hubshttps://genome.ucsc.edu/cgi-bin/hgHubConnect#publicHubsWeb browserDirect link to Track Data Hubs/Public Hubs database to search for and load the PhyloCSF Tracks
UCSC Genome Browser User Guidehttps://genome.ucsc.edu/goldenPath/help/hgTracksHelp.htmlWeb browserComprehensive user guide detailing how to navigate the UCSC Genome Browser
WoLF PSORThttps://wolfpsort.hgc.jpWeb browserProtein subcellular localization prediction tool

References

  1. Collins, F. S., Morgan, M., Patrinos, A. The human genome project: lessons from large-scale biology. Science. 300 (5617), 286-290 (2003).
  2. Lander, E. S., et al. Initial sequencing and analysis of the human genome.

Explore More Articles

Microprotein IdentificationSequence AnalysisPhyloCSFUCSC Genome BrowserNon coding RegionsProtein coding PotentialComparative GenomicsBioinformaticsBlatGenome AssemblyDNA SequenceProtein Sequence

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved